HTML/CSS Style Guide

https://gooqgle.github.io/styleguide/htmicssguide.xml

https://google.github.io/styleguide/htmlcssguide.xml

HTML / CSS Style

-+ Maintaining a clear and consistent style for html/css
sources is a key requirement for high quality code

Promotes readabllity
- Simplifies maintenance
+ Ensures an orderly evolution of the code base

- Adopting a single style guide for a team ensures all code
IS across a project is consistent.

Google H

General
Style Rules

General
Formatting
Rules

General
Meta Rules

HTML Style

Rules

HTML
Formatting
Rules

CSS Style
Rules

Protocol

Indentation

Capitalization

Encoding Comments

Action ltems

Document Type

HTML Validity Semantics

Trailing Whitespace

ML/CSS Style Guide

Multimedia Fallback Separation of Concerns

Entity References

Optional Tags

type Attributes

General Formatting

HTML Quotation Marks

CSS Validity

ID and Class Naming

ID and Class Name Style

Type Selectors

0 and Units

Declaration Order

Leading Os

Hexadecimal Notation

Prefixes

Shorthand Properties

ID and Class Name Delimiters

Hacks

Block Content Indentation

Declaration Stops

Declaration Block Separation

Selector and Declaration Separation

Property Name Stops

Rule Separation

CSS Quotation Marks

Section Comments

- A tour through selected recommendations

Bear in mind for your assignment!

Indentation

Vv | Indent by 2 spaces at a time.

Don’t use tabs or mix tabs and spaces for indentation.

Fantastic
Great

.example {
color: blue;

}

Capitalization
v ’ Use only lowercase.

All code has to be lowercase: This applies to HTML element names, attributes, attribute values (unless
text/CDATA), CSS selectors, properties, and property values (with the exception of strings).

<!—-- Not recommended -->
Home

<!-- Recommended -->

/* Not recommended */
color: #ESESES;

/* Recommended */
color: #eb5ebe5;

HTML Validity
\V/ ’ Use valid HTML where possible.

Use valid HTML code unless that is not possible due to otherwise unattainable performance goals regarding file
size.

Use tools such as the W3C HTML validator to test.

Using valid HTML is a measurable baseline quality attribute that contributes to learning about technical
requirements and constraints, and that ensures proper HTML usage.

<!—-- Not recommended -->
<title>Test</title>
<article>This is only a test.

<!-- Recommended -->

<!DOCTYPE html>

<meta charset="utf-8">
<title>Test</title>

<article>This is only a test.</article>

Semantics
\V/ ’ Use HTML according to its purpose.

Use elements (sometimes incorrectly called “tags”) for what they have been created for. For example, use
heading elements for headings, p elements for paragraphs, a elements for anchors, etc.

Using HTML according to its purpose is important for accessibility, reuse, and code efficiency reasons.

<!-- Not recommended -->
<div onclick="goToRecommendations();">All recommendations</div>

<!-- Recommended -->
All recommendations

Multimedia Fallback
\V/ ’ Provide alternative contents for multimedia.

For multimedia, such as images, videos, animated objects via canvas, make sure to offer alternative access.
For images that means use of meaningful alternative text (alt) and for video and audio transcripts and captions, if

available.

Providing alternative contents is important for accessibility reasons: A blind user has few cues to tell what an image
is about without @alt, and other users may have no way of understanding what video or audio contents are about

either.

(For images whose alt attributes would introduce redundancy, and for images whose purpose is purely decorative
which you cannot immediately use CSS for, use no alternative text, as in alt="".)

<!-- Not recommended -->

<!-- Recommended -->

Separation of Concerns
\V/ ’ Separate structure from presentation from behavior.

Strictly keep structure (markup), presentation (styling), and behavior (scripting) apart, and try to keep the
interaction between the three to an absolute minimum.

That is, make sure documents and templates contain only HTML and HTML that is solely serving structural
purposes. Move everything presentational into style sheets, and everything behavioral into scripts.

In addition, keep the contact area as small as possible by linking as few style sheets and scripts as possible from
documents and templates.

Separating structure from presentation from behavior is important for maintenance reasons. It is always more
expensive to change HTML documents and templates than it is to update style sheets and scripts.

<!-- Not recommended -->

<!DOCTYPE html>

<title>HTML sucks</title>

<link rel="stylesheet" href="base.css" media="screen">

<link rel="stylesheet" href="grid.css" media="screen">

<link rel="stylesheet" href="print.css" media="print">

<hl style="font-size: lem;">HTML sucks</hl>

<p>I've read about this on a few sites but now I'm sure:
<u>HTML is stupid!!1l</u>

<center>I can’t believe there’s no way to control the styling of
my website without doing everything all over again!</center>

<!-- Recommended -->

<!DOCTYPE html>

<title>My first CSS-only redesign</title>

<link rel="stylesheet" href="default.css">

<h1l>My first CSS-only redesign</hl>

<p>I've read about this on a few sites but today I’'m actually
doing it: separating concerns and avoiding anything in the HTML of
my website that is presentational.

<p>It’'s awesome!

type Attributes
\V/ ’ Omit type attributes for style sheets and scripts.
Do not use type attributes for style sheets (unless not using CSS) and scripts (unless not using JavaScript).

Specifying type attributes in these contexts is not necessary as HTML5 implies text/css and
text/javascript as defaults. This can be safely done even for older browsers.

<!-- Not recommended -->
<link rel="stylesheet" href="//www.google.com/css/maia.css"
type="text/css">

<!-- Recommended -->
<link rel="stylesheet" href="//www.google.com/css/maia.css">

<!-- Not recommended -->
<script src="//www.google.com/js/gweb/analytics/autotrack.js"
type="text/javascript"></script>

<!-- Recommended -->
<script src="//www.google.com/js/gweb/analytics/autotrack.js"></script>

General Formatting
\V/ ’ Use a new line for every block, list, or table element, and indent every such child element.

Independent of the styling of an element (as CSS allows elements to assume a different role per display
property), put every block, list, or table element on a new line.

Also, indent them if they are child elements of a block, list, or table element.

(If you run into issues around whitespace between list items it’s acceptable to put all 1i elements in one line. A
linter is encouraged to throw a warning instead of an error.)

<blockquote>
<p>Space, the final frontier.</p>
</blockquote>

Moe
Larry
Curly

<table>
<thead>
<tr>
<th scope="col">Income
<th scope="col">Taxes
<tbody>
<tr>
<td>$ 5.00
<td>$ 4.50
</table>

HTML Quotation Marks

E When quoting attributes values, use double quotation marks.

Use double (" ") rather than single quotation marks (' ') around attribute values.

<!-- Not recommended -->
Sign in

<!-- Recommended -->
Sign in

CSS Validity
v ’ Use valid CSS where possible.

Unless dealing with CSS validator bugs or requiring proprietary syntax, use valid CSS code.

Use tools such as the W3C CSS validator to test.

Using valid CSS is a measurable baseline quality attribute that allows to spot CSS code that may not have any
effect and can be removed, and that ensures proper CSS usage.

ID and Class Naming
\V/ ’ Use meaningful or generic ID and class names.

Instead of presentational or cryptic names, always use ID and class names that reflect the purpose of the
element in question, or that are otherwise generic.

Names that are specific and reflect the purpose of the element should be preferred as these are most
understandable and the least likely to change.

Generic names are simply a fallback for elements that have no particular or no meaning different from their siblings.
They are typically needed as “helpers.”

Using functional or generic names reduces the probability of unnecessary document or template changes.

/* Not recommended: meaningless */
#yee-1901 {}

/* Not recommended: presentational */
.button-green {}
.clear {}

/* Recommended: specific */
#gallery {}

#login {}

.video {}

/* Recommended: generic */
.aux {}
.alt {}

ID and Class Name Style
zJ Use ID and class names that are as short as possible but as long as necessary.
Try to convey what an ID or class is about while being as brief as possible.

Using ID and class names this way contributes to acceptable levels of understandability and code efficiency.

/* Not recommended */
#navigation {}
.atr {}

/* Recommended */
#nav {}
.author {}

Shorthand Properties
\V/ ’ Use shorthand properties where possible.

CSS offers a variety of shorthand properties (like font) that should be used whenever possible, even in cases
where only one value is explicitly set.

Using shorthand properties is useful for code efficiency and understandability.

/* Not recommended */
border-top-style: none;

font-family: palatino, georgia, serif;
font-size: 100%;

line-height: 1.6;

padding-bottom: 2em;

padding-left: lem;

padding-right: lem;

padding-top: 0;

/* Recommended */

border-top: 0;

font: 100%/1.6 palatino, georgia, serif;
padding: 0 lem 2em;

ID and Class Name Delimiters

E Separate words in ID and class names by a hyphen.

Do not concatenate words and abbreviations in selectors by any characters (including none at all) other than
hyphens, in order to improve understanding and scannability.

/* Not recommended: does not separate the words “demo” and “image” */

.demoimage {}

/* Not recommended: uses underscore instead of hyphen */
.error status {}

/* Recommended */
#video-id {}
.ads-sample {}

Declaration Stops
E Use a semicolon after every declaration.

End every declaration with a semicolon for consistency and extensibility reasons.

/* Not recommended */
.test {
display: block;
height: 100px
}

/* Recommended */
.test {
display: block;
height: 100px;
}

Rule Separation
E Separate rules by new lines.
Always put a blank line (two line breaks) between rules.

html {
background: #fff;
}

body {
margin: auto;
width: 50%;

}

CSS Quotation Marks
\V/ ’ Use single quotation marks for attribute selectors and property values.

Use single (' ') rather than double (" ") quotation marks for attribute selectors or property values. Do not use
quotation marks in URI values (url()).

Exception: If you do need to use the @charset rule, use double quotation marks —single quotation marks are not
permitted.

/* Not recommended */
@import url("//www.google.com/css/maia.css");

html {
font-family: "open sans", arial, sans-serif;

}

/* Recommended */
@import url(//www.google.com/css/maia.css);

html {
font-family: 'open sans', arial, sans-serif;

}

Parting Words (from google)

“Be consistent.

If you’re editing code, take a few minutes to look at the code around
you and determine its style. If they use spaces around all their
arithmetic operators, you should too. If their comments have little
boxes of hash marks around them, make your comments have little
boxes of hash marks around them too.

The point of having style guidelines is to have a common vocabulary of
coding so people can concentrate on what you’re saying rather than
on how you’re saying it. We present global style rules here so people
know the vocabulary, but local style is also important. If code you add
to a file looks drastically different from the existing code around it, it
throws readers out of their rhythm when they go to read it. Avoid this.”

