SELECT * FROM SONG;

ID ARTIST |DURATION TITLE
MOdels 1 Beethoven 0 'Piano Sonata No. 3

2 Beethoven|0 Piano Sonata No. 7

3 Beethoven 0 'Piano Sonata No. 10

4 Beethoven 0 Piano Concerto No. 27

§ Beethoven 0 'Plano Concertos No. 17

6 Beethoven 0 Piano Concerto No. 10

(6 rows, 6 ms)

e

Model View Controller

Controller

REQUEST Application logic, process
the user request and get
appropriate data, then
output a design view

N

)
@
3
%,

Model

Your website design, Database related, not
HTML files no images necessary database,

css etc here only data can be xml even
HTML layouts text files

Database in Play

conf/application.conf

COanguratlon flle azt.ll)atabase configuration

. # ~nmnn

Sp@leleS a ﬁ Enable a database engine if needed.
database that W||| # To quickly set up a development database, use either:
— mem : for a transient in memory database (H2 in memory)

be |ntegrated Into # - fs : for a simple file written database (H2 file stored)

. . db.default=

the application mfpco- e taute-nen

In Memory test database
Full SQL support
Replaced with ‘production’
database at a later stage

Inspecting the Database in Play

When app is

. =) http://localhost:9000/@db
running, browse to

Saved Settings: Generic H2 (Embedded)

Setting Name: Generic H2 (Embedded) Save || Remove
Driver Class: org.h2.Driver

JDBC URL: jdbc:h2:mem:play

User Name: sa

Password:

Connect Test Connection

log In to database

Database
Tables

Database console

- ~
&Y | e

(] jdbc:h2:mem:play
=] playlist

g id

0 duration

0 title

|2, Indexes
= I playlist_song

i playlist_id

g songs_id

|2, Indexes
= £l song

g id

o artist

8 duration

o0 title

|2, Indexes

() information_schema

£22 Sequences
{§ Users

(3) H2 1.4.193 (2016-10-31)

@ Auto commit “0 ‘D | Maxrows:| 1000 ¢ @ O | “ |Autocomplete | Off 4 Autoselect | On 4| (7

Run || Run Selected | Auto complete |Clear SQL statement:

Important Commands

(2 Displays this Help Page
Shows the Command History
{2 Ctri+Enter Executes the current SQL statement

_Q Shift+Enter| Executes the SQL statement defined by the text selection
Ctrl+Space Auto complete

oy Disconnects from the database

Sample SQL Script

Delete the table ifitexists DROP TABLE IF EXISTS TEST,

Create a new table CREATE TABLE TEST(ID INT PRIMARY KEY,
with ID and NAME columns, NAME VARCHAR(255));

Add a new row INSERT INTO TEST VALUES(1, 'Hello");

Add another row INSERT INTO TEST VALUES(2, "World");

Query the table SELECT * FROM TEST ORDER BY ID;

Change data in a row UPDATE TEST SET NAME="Hi' WHERE ID=1,

Remove a row DELETE FROM TEST WHERE ID=2;

Help HELP ...

Adding Database Drivers

Additional database drivers can be registered by adding the Jar file location of the driver to the the envi
CLASSPATH. Example (Windows): to add the database driver library C:/Programs/hsaldb/lib/hsgldb.jar
H2DRIVERS to C:/Programs/hsaqldb/lib/hsgldb.jar.

htt

N oy

ttps

-
Q
m

vb

WIKIPEDIA

The Free Encyclopedia

Main page

Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact page

Tools
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Wikidata item
Cite this page

//en wikipedia.org/wiki/YAML

Preloading the Database - YAML

& Notlogged in Talk Contributions Create account Login

Article Talk Read Edit View history |Search Wikipedia Q

YAML

From Wikipedia, the free encyclopedia

commonly used for configuration files, but could be used in many applications where data is
being stored (e.g. debugging output) or transmitted (e.g. document headers). YAML targets many
of the same communications applications as XML, but has taken a more minimal approach which
intentionally breaks compatibility with SGML.I"! YAML 1.2 is a superset of JSON, another
minimalist data serialization format where braces and brackets are used instead of indentation.!?!

Custom data types are allowed, but YAML natively encodes scalars (such as strings, integers,
and floats), lists, and associative arrays (also known as hashes or dictionaries). These data types
are based on the Perl programming language, though all commonly-used high-level programming
languages share very similar concepts. YAML supports both Python-style indentation to indicate
nesting, and a more compact format that uses [] for lists and {} for hashes.!'! The colon-centered
syntax used to express key-value pairs is inspired by electronic mail headers as defined in RFC

Filename
extension

Internet
media type

Initial release

Latest release

Type of format
Open format?
Website

YAML

.yaml, .yml
not registered

11 May 2001; 15 years
ago

1.2 (Third Edition)
(1 October 2008; 7 years

ago)

Data interchange
Yes

yaml.org &’

0822, and the document separator "--" is borrowed from MIME (RFC 2045&). Escape sequences are reused from C, and whitespace
wrapping for multi-line strings is inspired from HTML. Lists and hashes can contain nested lists and hashes, forming a tree structure; arbitrary
graphs can be represented using YAML aliases (similar to XML in SOAP).["] YAML is intended to be read and written in streams, a feature

inspired by SAX.l]

Support for reading and writing YAML is available for several programming languages./®! Some source code editors such as Emacs®! and
various integrated development environments!®/€l7] have features that make editing YAML easier, such as folding up nested structures or

automatically highlighting syntax errors.

YAML is a widely used notion for
representing structured information

YAML Example

An invoice expressed via
YAML. Structure is shown
through indentation (one or

more spaces). Sequence

items are denoted by a
dash, and key value pairs
within a map are
separated by a colon.

invoice: 34843
date . 2001-01-23
bill-to: &1d001
given : Chris
family : Dumars
address:
lines: |
458 Walkman Dr.
Suite #292
city : Royal Oak
state : MI
postal : 48046
ship-to: *1d001

product:

- sku : BL394D
quantity . 4
description : Basketball
price : 450.00

- sku : BL4438H
quantity : 1
description : Super Hoop
price : 2392.00

tax : 251.42

total: 4443.52

comments: >
Late afternoon is best.
Backup contact 1is Nancy

Billsmer @ 338-4338.

java

Song s1 = new Song("Piano Sonata No. 3", "Beethoven");
Song s2 = new Song("Piano Sonata No. 7", "Beethoven");
Song s3 = new Song("Piano Sonata No. 10", "Beethoven");

Playlist pl = new Playlist("Beethoven Sonatas");
pl.songs.add (sl1);
pl.songs.add (s2);
pl.songs.add (s3);

Embedded in a compiled
program.
When running, objects
OCCupy appropriate In
memory data structures.

Just a File format.

Used to represent structured
iInformation in a flat file.
Must be processed by various
tools in order to be useful.

yaml

Song(sl):
title: Piano Sonata No.
artist: Beethoven
duration: 5

Song(s2):
title: Piano Sonata No.
artist: Beethoven
duration: 6

Song(s3):
title: Piano Sonata No.
artist: Beethoven
duration: 8

Playlist(pl):
title: Bethoven Sonatas
duration: 19
Songs:
- sl
- S2
- s3

3

7

10

yaml in Play

- playlist-3
= docviewer ~/dev/play-1.5.0/mod
s playlist-playlist.3.end ~/repos/m
app
controllers
c About

Bootstap class & Admin
contains instruction Dashboard

¢ PlaylistCtrl
to load a model from & Start

yaml file models

Views

ﬁ & Bootstrap

conf
= application.conf

ﬁ | data.yml

711 dependencies.yml

data.yml contains the Jimessages

. = routes
model representation oublic

yaml in Play

- playlist-3
= docviewer ~/dev/play-1.5.0/modulé
= playlist-playlist.3.end ~/repos/moc
app
Model data will be controllers
: models
loaded into model ﬁ & Playlist
objects € Song
Views
c Bootstrap
conf
= application.conf
1| data.yml
-1 dependencies.yml
|messages
= routes
public

Revised Model Class: Song

Plain Old Java Object (POJO)

Entity Model Object

package models;

public class Song

{

}

public
public

public
{
this
this
I

String title;
String artist;

Song(String title, String artist)

.title = title;
.artist = artist;

package models;
import javax.persistence.Entity;
import play.db.jpa.Model;

@Entity
public class Song extends Model

{
public String title;
public String artist;
public int duration;

public Song(String title, String artist, int duration)

{
this.title = title;
this.artist = artist;
this.duration = duration;
¥
}

“extends” from Model
class (inheritance).
Marked as
“@Entity” (Annotation).

Revised Model Class: Playlist

Plain Old Java Object (POJO)

package models;

import java.util.ArraylList;
import java.util.List;

public class Playlist

{

}

public String title;

public List<Song> songs = new ArraylList<Song>();

public Playlist(String title)

{
}

this.title = title;

Entity Model Object

Playlist Song

songs

“extends” from Model
class (inheritance).
Marked as
“@Entity” (Annotation).

package models;

import java.util.ArraylList;
import java.util.List;

import javax.persistence.CascadeType;
import javax.persistence.Entity;
import javax.persistence.OneToMany;

import play.db.jpa.Model;

@Entity
public class Playlist extends Model

{
public String title;

@OneToMany(cascade = CascadeType.ALL)
public List<Song> songs = new ArraylList<Song>();

public Playlist(String title, int duration)
{
this.title = title;
this.duration = duration;
}
}

“@OneToMany” (Annotation)
describes Playlist->Song
relationship for database

Song(sl):
title: Piano Sonata No. 3
artist: Beethoven
duration: 5

Song(s2):
title: Piano Sonata No. 7
artist: Beethoven
duration: 6

Song(s3):
title: Piano Sonata No. 10
artist: Beethoven
duration: 8

Playlist(pl):
title: Bethoven Sonatas
duration: 19
songs:
- sl
- s2
- S3

When play app starts -
Bootstrap.doJob() called

playlist
docviewer ~/dev/play-1.5.0
playlist ~/repos/wit-hdip-comp-
app
controllers
models
c Playlist
€ Song
views
errors
tags

& about.html
& admin.html

& dashboard.html

a - main.html
& playlist.html

& start.html
Bootstrap

import java.util.List;
import
import
import

play.x;
play.jobs.x;
play.test.x;
import models.x;
@OnApplicationStart
public class Bootstrap extends Job
{
public void doJob()
{

}

Fixtures.loadModels("data.yml");
¥

localhost:9000/@db

C
conf
= application.conf
data.yml
dependencies.yml
| messages
= routes
prIic [] jdbc:h2:mem:play
-1] playlist
A id
i duration
g title

M| & | @Autocommit “0 “p | Maxrows:| 1000 ¢ [»] | | Auto complete | Off

|2, Indexes
-] playlist_song
i playlist_id
i songs_id
|2, Indexes
=l £ song

g id

f artist

fl duration

i title

|2, Indexes
[+ (] information_schema
¥ $22 Sequences
[+ {43 Users
i) H2 1.4.193 (2016-10-31)

4 | Autol

Run | Run Selected Auto complete | Clear| SQL statement:

Important Commands

@ Displays this Help Page
Shows the Command History
(D Ctri+Enter Executes the current SQL statement
Q Shift+Enter Executes the SQL statement defined by the text selection
Ctrl+Space Auto complete

&Y Disconnects from the database

Bootstrap class

iMac:playlist-2 edeleastar$ play run

~

- import java.util.List;

~

RENRVEERTEN _
4 N | N AN import play.x;
| _/ import play.jobs.x;

import play.test.x;
play! 1.5.0, https://www.playframework.com

Ctrl+C to stop import models.x;

using java version "1.8.0_162" @OnApplicationStart

Listening for transport dt_socket at address: 8000 pub'Lic class Bootstrap extends Job
17:53:49,806 INFO ~ Starting /Users/edeleastar/dev/playlist-2 {

17:53:49,906 WARN ~ You're running Play! in DEV mode . .
17:53:50,007 INFO ~ Listening for HTTP on port 9000 (Waiting a first request to start) ... pUbllc void doJob()

~ Server is up and running {

17:53:59,610 INFO ~ HikariPool-1 - Starting... Fixtures. loadModels("data. ym'l_") :
17:53:59,648 INFO HikariPool-1 - Start completed. }

17:53:59,662 INFO Connected to jdbc:h2:mem:play for default

17:54:00,703 INFO Application 'playlist-2' is now started ! }

17:54:01,593 INFO Rendering Start

Application Lifecycle -> Run Bootstrap doJob
once, when application launched
This pre-loads the database with test objects

M @ | @ Auto commit “D

|] jdbc:h2:mem:play
= £ playlist
g id
 duration
o title
|2, Indexes
= 2 playlist_song
g playlist_id
] songs id
|2, Indexes
= £l song
g id
0 artist
 duration
o title
|2, Indexes
() information_schema
s22 Sequences
{#} Users
(1) H2 1.4.193 (2016-10-31)

Inspecting the Playlist Table

/0 | Maxrows:| 1000 %| @ o | 4 | Auto complete | Off

Run | Run Selected | Auto complete Clear SQL statement:

¢ Autoselect | On § (2)

SELECT * FROM PLAYLIST

SELECT * FROM PLAYLIST,
ID DURATION TITLE

1 10 Bethoven Sonatas
2 0 Bethoven Concertos

(2 rows, 3 ms)

Edit

localhost:9000/@db

M| & | @ Auto commit <0

jdbc:h2:mem:play
L playlist

g id

f duration
B

a

§
=

—

title
%, Indexes
playlist_song
g playlist_id
g songs_id
|2, Indexes

w
Q
S
o o

artist

duration

title

2, Indexes

() information_schema
[+ 5% Sequences

@ {§} Users
(1) H2 1.4.193 (2016-10-31)

HHHHH[HHHH[HHHHH[J
O N o oo

Inspecting the Songs Table

| Max rows: | 1000 #| 3 o | | Auto complete | Off

Run Run Selected Auto complete Clear SQL statement:

+ Autoselect On &%

@

SELECT * FROM PLAYLIST_SONG

SELECT * FROM PLAYLIST_SONG;
PLAYLIST_ID |SONGS_ID

(

NN TN e e a

(o))

Edit

1

a AW N

rows, 4 ms)

localhost:9000/@db

