Security

Secure Web Development
— Authentication

Web authentication — credentials

* Do not include credentials in hidden fields, headers,
cookies (or code!)

« Passwords/credentials should be stored securely in a
centralised location
— Should only be readable by suitably privileged users

« Passwords should be “salted” and hashed
— Salting involves appending random bits to each password

— Salted password is then hashed (i.e. one-way encrypted) for
storage

— Obijective is to store something derived from the password that
allows an entered candidate password to be checked ...

— ... but such that the password cannot be retrieved (by
anybody, even an administrator)

Loading a new password

Paswword Password File

Salt User ID Salt Hash code
u
slow hash Load > .
function | .

 New line in password file contains user id, salt, and output of (slow)

hash function 3

Verifying a password

User id

Select

Password File

User ID Salt Hash code

Salt

Hashed password

\ 4

Password

\ 4

slow hash
function

p Compare

Purpose of “salt”

 The salt serves several purposes:
— Frustrates dictionary attacks.

— Makes reverse lookup of hash value more difficult
* e.g. using a search engine or rainbow tables

— Prevents duplicate passwords appearing as
duplicates in password file

— Protects users where same password is reused on
different systems/sites.

Password hashing & salting in practice

 The bcrypt module makes it fairly straightforward
— To create password hash:

bcrypt.hash(plaintextPassword, saltRounds, function(err, hash) {
// Store hash in your password DB.

});
— To check entered password:

bcrypt.compare(candidatePassword, hash, function(err, res) {
// res is true if password is correct

});

* Bcrypt is also available for several other
languages and frameworks — e.g. |BCrypt for Java

Password strength

* Need to enforce strong passwords

— Should be resistant to brute force attacks
» Long, preferably a pass phrase
« Hard to guess, ideally random

— User awareness and support
» Education on non-disclosure

* Provision of tools (e.g. password manager)

— People generally cannot remember passwords that are enough to
reliably defend against dictionary attacks

— Audit / check compliance with policy

Password/credentials change policy

 Need secure password change policy

— Do not use secret questions and answers.

* |nstead, e-mail the user with a time limited activation code and
limit account capabilities for 24+ hours

« Or use out-of-band messaging (e.g. SMS)

— May require users to change passwords frequently
« Often mandated by standards/regulations (e.g. PCI DSS)
» Value of this is debatable

— "Delete means delete”
* Not a good idea to keep users' password history

* Credentials such as API keys may have a lifetime and/
or associated rotation policy

Multi-factor authentication

« Authentication can be made stronger by requiring a
combination of:
— What you know (e.g. password or pass phrase)

— What you have (e.g. SIM card, smartphone app, physical
token, certificate file, ...)

— What you are (biometrics)

1. Scan this barcode with your Google Authenticator app:

@

Authentication failure logging

Authentication code should fail securely

— i.e. software bugs, error modes (e.g. due to temporary loss
connectivity or malformed user input) should not result in
successful authentication

» Count failed logins per user & impose soft lockout on
multiple failures

 Count failed logins per app

* Report to user on last login time, failed logins, failed
password recovery attempts

* Log all authentication decisions, including failures

10

Cookies

e Cookies are small pieces of information stored on a
client and associated with a specific server

— When you access a specific website, it might store
information as a cookie

— Every time you revisit that server, the cookie is re-sent to the
server

— Effectively used to hold state information over sessions

« Cookies can hold any type of information

— Can also hold sensitive information

» This includes passwords, credit card information, social security
number, etc.

» Session cookies, non-persistent cookies, persistent cookies
— Almost every sophisticated website uses cookies

Protecting Cookies

» Make cookies HttpOnly

— Restricts access from non-HTTP sources (e.g.
JavaScript)

* Set secure flag

12

Session cookies

Recommended practice is to store authentication tokens
In session object on server side

— A session is the time a user spends on a particular visit to a
website.

— Session data maintained by web server in session object to allow
for preservation of state across sequence of browser requests

Store session ID in session cookie

Make sure framework uses secure session |IDs

— Session IDs should be long and random — i.e. impossible to
guess

Don't leave sessions active unnecessarily

— Provide logout button on every page

— On logout, destroy the session object

— Implement session timeout (idle time, total time)

13

HT TP Authentication

HT TP Authentication

« HTTP provides built-in authentication
* On browsers you get a login prompt

-» Prompt =163
@ Enter username and password for "Authorized Users" at localhost
User Name:
ll
Password:

[T Use Password Manager to remember these values.

OK Cancel |

|

* There are two types of authentication: Basic
and Digest

HTTP Basic Access Authentication

>

GET /protected/index.html HTTP/1.1 |—

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic realm=*“Private”

<€

Display

Login panel GET /protected/index.html HTTP/1.1
Authorization: Basic JAadf0987awe

.

>

Problems with Basic Authentication

 Passwords are easy to intercept

 Repeated Exposure: Password sent with
every request

 Passwords are trivial to decode (not
encrypted, just Base64 encoded)

* |Insecure storage (password cached by
browser)

* No logout function

Digest Access Authentication

GET /protected/index.html HTTP/1.1 |—
>

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Digest realm=*Private”
nonce=*897sgkjhsad Adsiu”

<€

Display GET /protected/index.html HTTP/1.1

Login panel Aythorization: Digest username=*“Alice”
realm=“Private” nonce=“897sgkjhsadAdsiu”
response=“Sijasd9734kuyasds(g”

.

>

Challenge and Response

* Challenge (nonce): any changing string
— e.g. MD5(IP address:timestamp:server secret)

* Response: challenge hashed with the user's
name & password and URL of requested
page
— MD5(MD5(name:realm:password):nonce:MD35

(request))

o Server-specific implementation options
— One time nonce
— Time-stamped nonce

Digest Advantages over Basic Auth

 Can't replay the client/server handshake
because nonce changes each time

* An intercepted response is valid only for a
single web page because the response has
the request hashed.

e ... still inherently insecure though!

