
1 

Security  

Secure Web Development 
 – Authentication 



Web authentication – credentials 

•  Do not include credentials in hidden fields, headers, 
cookies (or code!) 

•  Passwords/credentials should be stored securely in a 
centralised location 
–  Should only be readable by suitably privileged users 

•  Passwords should be “salted” and hashed 
–  Salting involves appending random bits to each password 
–  Salted password is then hashed (i.e. one-way encrypted) for 

storage 
–  Objective is to store something derived from the password that 

allows an entered candidate password to be checked … 
–  … but such that the password cannot be retrieved (by 

anybody, even an administrator) 



3 

Loading a new password 

•  New line in password file contains user id, salt, and output of (slow) 
hash function 



4 

Verifying a password 



5 

Purpose of “salt” 

•  The salt serves several purposes: 
–  Frustrates dictionary attacks.  

–  Makes reverse lookup of hash value more difficult 
•  e.g. using a search engine or rainbow tables 

–  Prevents duplicate passwords appearing as 
duplicates in password file 

–  Protects users where same password is reused on 
different systems/sites. 



6 

Password hashing & salting in practice 

•  The bcrypt module makes it fairly straightforward 
–  To create password hash: 

bcrypt.hash(plaintextPassword, saltRounds, function(err, hash) { "
  // Store hash in your password DB.  "
}); "

–  To check entered password: 
bcrypt.compare(candidatePassword, hash, function(err, res) { "
    // res is true if password is correct"
}); "

•  Bcrypt is also available for several other 
languages and frameworks – e.g. jBCrypt for Java 



7 

Password strength 

•  Need to enforce strong passwords 
–  Should be resistant to brute force attacks 

•  Long, preferably a pass phrase 
•  Hard to guess, ideally random 

–  User awareness and support 
•  Education on non-disclosure 
•  Provision of tools (e.g. password manager) 

–  People generally cannot remember passwords that are enough to 
reliably defend against dictionary attacks 

–  Audit / check compliance with policy 



8 

Password/credentials change policy 

•  Need secure password change policy 
–  Do not use secret questions and answers.  

•  Instead, e-mail the user with a time limited activation code and 
limit account capabilities for 24+ hours 

•  Or use out-of-band messaging (e.g. SMS) 
–  May require users to change passwords frequently  

•  Often mandated by standards/regulations (e.g. PCI DSS) 
•  Value of this is debatable 

–  "Delete means delete" 
•  Not a good idea to keep users' password history 

•  Credentials such as API keys may have a lifetime and/
or associated rotation policy 



9 

Multi-factor authentication 

•  Authentication can be made stronger by requiring a 
combination of: 
–  What you know (e.g. password or pass phrase) 
–  What you have (e.g. SIM card, smartphone app, physical 

token, certificate file, ...) 
–  What you are (biometrics) 



10 

Authentication failure logging 

•  Authentication code should fail securely 
–  i.e. software bugs, error modes (e.g. due to temporary loss 

connectivity or malformed user input) should not result in 
successful authentication 

•  Count failed logins per user & impose soft lockout on 
multiple failures 

•  Count failed logins per app 
•  Report to user on last login time, failed logins, failed 

password recovery attempts 
•  Log all authentication decisions, including failures 



Cookies 

•  Cookies are small pieces of information stored on a 
client and associated with a specific server 
–  When you access a specific website, it might store 

information as a cookie 
–  Every time you revisit that server, the cookie is re-sent to the 

server 
–  Effectively used to hold state information over sessions 

 
•  Cookies can hold any type of information 

–  Can also hold sensitive information 
•  This includes passwords, credit card information, social security 

number, etc. 
•  Session cookies, non-persistent cookies, persistent cookies 

–  Almost every sophisticated website uses cookies 



12 

Protecting Cookies  

•  Make cookies HttpOnly 
–  Restricts access from non-HTTP sources (e.g. 

JavaScript) 
•  Set secure flag 

 



13 

Session cookies 

•  Recommended practice is to store authentication tokens 
in session object on server side 
–  A session is the time a user spends on a particular visit to a 

website.  
–  Session data maintained by web server in session object to allow 

for preservation of state across sequence of browser requests 

•  Store session ID in session cookie 
•  Make sure framework uses secure session IDs 

–  Session IDs should be long and random – i.e. impossible to 
guess 

•  Don't leave sessions active unnecessarily 
–  Provide logout button on every page 
–  On logout, destroy the session object 
–  Implement session timeout (idle time, total time) 



14 

HTTP Authentication 
 



HTTP Authentication 

•  HTTP provides built-in authentication 
•  On browsers you get a login prompt 

•  There are two types of authentication: Basic 
and Digest 



HTTP Basic Access Authentication 

GET /protected/index.html HTTP/1.1 

HTTP/1.1   401 Unauthorized 
WWW-Authenticate: Basic realm=“Private” 

GET /protected/index.html HTTP/1.1 
Authorization: Basic JAadf0987awe 

Display 
Login panel 



Problems with Basic Authentication 

•  Passwords are easy to intercept 
•  Repeated Exposure: Password sent with 

every request 
•  Passwords are trivial to decode (not 

encrypted, just Base64 encoded) 
•  Insecure storage (password cached by 

browser) 
•  No logout function 



Digest Access Authentication 

GET /protected/index.html HTTP/1.1 

HTTP/1.1   401 Unauthorized 
WWW-Authenticate: Digest realm=“Private” 
nonce=“897sgkjhsadAdsiu” 

GET /protected/index.html HTTP/1.1 
Authorization: Digest username=“Alice” 
realm=“Private” nonce=“897sgkjhsadAdsiu” 
response=“5ijasd9734kuyasds0g” 

Display 
Login panel 



Challenge and Response 

•  Challenge (nonce): any changing string 
–  e.g. MD5(IP address:timestamp:server secret) 

•  Response: challenge hashed with the user’s 
name & password and URL of requested 
page 
–  MD5(MD5(name:realm:password):nonce:MD5 

(request)) 
•  Server-specific implementation options 

–  One time nonce 
–  Time-stamped nonce 



Digest Advantages over Basic Auth 

•  Can’t replay the client/server handshake 
because nonce changes each time 

•  An intercepted response is valid only for a 
single web page because the response has 
the request hashed. 

•  … still inherently insecure though! 


