Agile Software Development

Dr. Siobhan Drohan (sdrohan@wit.ie)
Eamonn de Leastar (edeleastar@wit.ie)

Waterford Institute of Technology

oy INSTIT UID TECNEOLAIOCHTA PHORT LARCGE

Agile and Test Driven Development (TDD)

> 2
\& S
A A

. %
TDD circle ¢
of life e"

N

Refactor

Waterfall - development approach

M—J»

Maintain

Waterfall - development approach

Tan Feb Mar Apr May Jun Jul Aug Sep Oct

Requirements
Design

A

Testand Fix
Test and Fix 1estand Fix
Test and F Testand Fix

-
\TEEt and Fix

Testand Fix

Waterfall - Working Features

"W orking Features

RRAND CAMP

THE NEW PRODUCT WATERFALL

by Tom Fuhbouine

= 43 (x| TWSH WED
” DESIGNED Fog
THIS ScENALlo || PATCH (T AS
" VPERONT REST WE (AN
?HOAiTDOO(l;J; ' NO TIME To
ENTIRE (0URSE f L;’/ ", | HANGE (oufse
1€ WE DON'T IHATEVER wid? VS NowS
KNOW WHAT'S || HAPPENS, JusT
AHEKRD © KEEP CADDUN !
| PLAN BuiL D TEST LAUNCH
® 3010 ToMFSHBURNE. o™

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/

Waterfall

100

a0

60

40

20

Relative Cost of Fixing Defects

100

1 6.5
1 | I |
Design Implementation Testing Maintenance

Figure 3: IBM System Science Institute Relative Cost of Fixing Defects

Defects found in testing were 15 times more costly than if they were found during the design phase and
2 times more than if found during implementation.

https://www.researchgate.net/publication/255965523 Integrating Software Assurance into the Software Development Life Cycle SDLC

Waterfall Vs Agile

THE WATERFALL PROCESS

\

‘This project has got so big,
I'm not sure I'll be able to deliver it!’

THE AGILE PROCESS

It's so much better delivering this
project in bite-sized sections’

https://www.linkedin.com/pulse/pragmatic-pivoting-software-development-life-cycle-beyond-mkpadi/

Waterfall Vs Agile

Waterfall Cycles of Work

Construction
~ PlanningPhase Design Phase Phase QA Phase
Agile Cgcles of Work
- Feature A Feature B Feature C Feature D

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/

Agile — Iterative Approach

N NN DD

Vision Continue
Iteration 1 Iteration 2 Iteration 3 Iteration 4
Implementation & Developer Testing
Des‘?’” & ‘ QA / Acceptance
Analysis Testing
Iteration Detail
Detailed

Requirements (Deployment)
Evaluation /
Prioritization

https://cloudhcm.wordpress.com/2014/09/13/project-management-tool-for-saas-implementation-projects/

Agile — Both lterative and Incremental

Waterfall vs Agile — Cost of Change

Cost of change curve

Traditional

Change resisted

cost

Agile

Change welcome!

time

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/

Developer landscape has changed just a little (!) ...

* New tools have dramatically eased mundane developer tasks:
— Automated test tools (e.g. JUnit)
— System build tools (e.g. Maven, Gradle, SBT)
— Version control (e.g. Git repositories, Github hosting service)
— Continuous integration
« Used properly, OO languages can make software much easier to change.

» The cost curve is significantly flattened, i.e. costs don’t increase dramatically
with time.

+ Up front modeling becomes a liability — some speculative work will certainly be
wrong, especially in a business environment.

“Good programmers write code,
great programmers write tests”

15

“Never,
in the field of programming,
have so many
owed so much
to so few”

- Martin Fowler on the developers behind JUnit

16

RELD

1. Write a test
that fails

3. Eliminate
redundancy

REFAGTOR GREEN

2. Make the
code work

The mantra of Test-Driven Development (TDD) is “red, green, refactor”

Write a
test that
fails

Run the
test and

watch it
fail

TDD
Cycle

Implement
enough to

Run the
test and
watch it

Refactor
for clarity

test and
watch it

2 2012-2015 Gargoyle Software Inc.

TDD — Definition

Test-driven development (TDD) refers to a
style of programming 1n which three activities
are tightly interwoven:

* coding,
* testing (1n the form of writing unit tests) and

* design (in the form of refactoring).

REFACTOR

The mantra of Test-Driven Development (TDD) is “red, green, refactor”

https://www.agilealliance.org/glossary/tdd/

What is Unit Testing”

« A unit test is a piece of code written by a developer that exercises a very
small, specific area of functionality of the code being tested.

— Usually a unit test exercises some particular method in a particular context

 Unit tests are performed to prove that a piece of code does what the
developer thinks it should do.

« The question remains open as to whether that's the right thing to do
according to the customer or end-user:

— that is acceptance testing (Acceptance Test Driven Development,
Behaviour Driven Development)

20

What is Regression Testing”?

New code and changes to old code can affect the rest of the code base.

— ‘Affect’ sometimes means ‘break’.

We need to rerun tests on the old code, to verify it still works - this is
regression testing.

Regression testing is required for a stable, maintainable code base.

Unit tests retain their value over time and allows others to prove the software
still works (as tested).

What does Unit Testing Accomplish ?

- Does the code do what was expected?
— i.e. is the code fulfilling the intent of the developer?
- Does the code do what was expected all the time?

— exceptions get thrown, disks get full, network lines drop, buffers overflow -
is the code still performing as expected?

- Can the code be depended upon?
— Need to know for certain both its strengths and its limitations.
» Does the test document the developers intent?

— An important side-effect of unit testing is that it helps communicate the
code's intended use.

22

TDD — General

 An iterative technique to develop software.
 Tests are written before the code itself.
- As much (or more) about design as testing.
— Encourages design from user’s point of view.
— Encourages testing classes/units in isolation — Unit testing.

A test framework is used so that automated testing can be done after every
small change to the code.

» This may be as often as every 5 or 10 minutes.
« Axiom:
— ‘Code that isn’t tested doesn’t work’

— ‘Code that isn’t regression tested suffers from code rot (breaks eventually)’

TDD — General (Contd.)

- As much (or more) about documentation as testing.
— The tests are the documentation of what the code does.
* Must be learned and practiced.
- Consequences:
— Fewer bugs;
— More maintainable code - loosely-coupled, highly-cohesive systems.

— During development, the program always works—it may not do everything
required, but what it does, it does right.

— Breaks the cycle of more pressure == fewer tests (the fewer tests you write, the
less productive you are and the less stable your code becomes).

How is Unit Testing carried out?

- Step 1: Decide how to test the method in question before writing the code
itself

- Step 2: Write the test code itself, either before or concurrently with the
iImplementation code.

- Step 3: Run the test itself, and probably all the other tests in that part of the
system.

« Key Feature of executing unit tests:

— You need to be able to determine at a glance whether all tests are
succeeding/failing. The JUnit Framework will do this for us!

25

Wh
v bother with
T

DY

TDD — Why bother with TDD/Unit Testing

* Significant reductions in defect rates, at the cost of a
moderate increase 1n 1nitial development effort:

generally these overheads are more than offset
by a reduction in effort in projects' final phases.

* Anecdotal evidence suggests that TDD leads to

improved design qualities 1n the code, and more
generally a higher degree of technical quality.

https://www.agilealliance.org/glossary/tdd/

—Xcuses for not engaging in T

—Xcuse #1

PAY-AS-YOU-GO SINGLE TEST PHASE
T4 T4
Z =
- - _
Q Q
o =
))
B S \
& } } } ! & } } =. }
Time — Time — ||

“It takes too much time to write the tests”

— The trade-off is not “test now” versus “test later”

— It's linear work now versus exponential work and complexity trying to fix
and rework at the end.

29

—Xcuse 1

NO, | DIDN'T
GET THE TESTING DONE.
THE REQUIREMENTS WERE
AMBIGUOUS,

https://www.ca.com/us/products/excuse-free-testing.html

—Xcuse 1

2 (contd.)

Write a failing
feature test

BDD

Write a
failing
test

DD

Refactor

http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_517 Fall_2014/ch1b_28 cqg

Make, the
test \pass

n cycles

—XCuse #3

“It takes too long to run the tests”

32

—Xcuse #3

“It takes too long to run the tests”

—Separate out the longer-running tests from the short ones.

—Only run the long tests once a day, or once every few days
as appropriate, and run the shorter tests constantly.

—Your code isn’t finished until you have verified it works!

33

—Xcuse #4

“It's not developers job to test his/her code”

34

—Xcuse #4

“It's not developers job to test his/her code”

—Integral part of developer job is to create working code.

Developer R & QA

—XCUSe #5

“But it compiles!”

36

NOVICE PROGRAMMER

—Xcuse #5

I CAN'T
BELIEVE IT
WORKED
FIRST TIME!

“But it compiles!”

—A compiler's blessing is a pretty
shallow compliment. EXPERIENCED PROGRAMMER

I CAN'T
BELIEVE IT
WORKED
FIRST TIME...

37

—XCuUSe #6

“We refactor our code so frequently, that the time we invest in
tests just isn't worth it - they are going to change and be
irrelevant anyhow"

38

—Xcuse #6

“We refactor our code so frequently, that the time we invest in
tests just isn't worth it - they are going to change and be

irrelevant anyhow*

 How can you be certain you didn’t break anything when
refactoring your code?

* Regression testing is one of the number one reasons for doing
TDD...good regression tests will, almost immediately, show up

un-intended side effects of your code change.

* A good rule is...NEVER refactor without tests!

39

http://codesheriff.blogspot.ie/2011/11/excuse-5-frequent-refactoring-excuse.html

-Xcuse #7

“We are such talented programmers, we don’t need tests”

http://codesheriff.blogspot.ie/2011/11/excuse-5-frequent-refactoring-excuse.html

—Xcuse #7/

“We are such talented programmers, we don’t need
tests”

» Everyone has bugs in their code...we are human after
all!

. \e
» Ok, even if you are a “bug-free coder”, what @ e o
about Regression testing in the future by you s e .
and other programmers? >
Q P\\‘e(’bg

http://codesheriff.blogspot.ie/2011/11/excuse-5-frequent-refactoring-excuse.html

