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Agile and Test Driven Development (TDD)
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Waterfall - development approach
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Waterfall - Working Features
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https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/
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Figure 3: IBM System Science Institute Relative Cost of Fixing Defects

Defects found in testing were 15 times more costly than if they were found during the design phase and
2 times more than if found during implementation.

https://www.researchgate.net/publication/255965523 Integrating Software Assurance into the Software Development Life Cycle SDLC




Waterfall Vs Agile

THE WATERFALL PROCESS

\

‘This project has got so big,
I'm not sure I'll be able to deliver it!’

THE AGILE PROCESS

It's so much better delivering this
project in bite-sized sections’

https://www.linkedin.com/pulse/pragmatic-pivoting-software-development-life-cycle-beyond-mkpadi/




Waterfall Vs Agile

Waterfall Cycles of Work

Construction
~ PlanningPhase  Design Phase Phase QA Phase
Agile Cgcles of Work
- Feature A Feature B Feature C Feature D

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/




Agile — Iterative Approach
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https://cloudhcm.wordpress.com/2014/09/13/project-management-tool-for-saas-implementation-projects/




Agile — Both lterative and Incremental




Waterfall vs Agile — Cost of Change

Cost of change curve
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https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/




Developer landscape has changed just a little (!) ...

* New tools have dramatically eased mundane developer tasks:
— Automated test tools (e.g. JUnit)
— System build tools (e.g. Maven, Gradle, SBT)
— Version control (e.g. Git repositories, Github hosting service)
— Continuous integration
« Used properly, OO languages can make software much easier to change.

» The cost curve is significantly flattened, i.e. costs don’t increase dramatically
with time.

+ Up front modeling becomes a liability — some speculative work will certainly be
wrong, especially in a business environment.






“Good programmers write code,
great programmers write tests”
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“Never,
in the field of programming,
have so many
owed so much
to so few”

- Martin Fowler on the developers behind JUnit
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RELD

1. Write a test
that fails

3. Eliminate
redundancy

REFAGTOR GREEN

2. Make the
code work

The mantra of Test-Driven Development (TDD) is “red, green, refactor”
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TDD — Definition

Test-driven development (TDD) refers to a
style of programming 1n which three activities
are tightly interwoven:

* coding,
* testing (1n the form of writing unit tests) and

* design (in the form of refactoring).

REFACTOR

The mantra of Test-Driven Development (TDD) is “red, green, refactor”

https://www.agilealliance.org/glossary/tdd/




What is Unit Testing”

« A unit test is a piece of code written by a developer that exercises a very
small, specific area of functionality of the code being tested.

— Usually a unit test exercises some particular method in a particular context

 Unit tests are performed to prove that a piece of code does what the
developer thinks it should do.

« The question remains open as to whether that's the right thing to do
according to the customer or end-user:

— that is acceptance testing (Acceptance Test Driven Development,
Behaviour Driven Development)
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What is Regression Testing”?

New code and changes to old code can affect the rest of the code base.

— ‘Affect’ sometimes means ‘break’.

We need to rerun tests on the old code, to verify it still works - this is
regression testing.

Regression testing is required for a stable, maintainable code base.

Unit tests retain their value over time and allows others to prove the software
still works (as tested).



What does Unit Testing Accomplish ?

- Does the code do what was expected?
— i.e. is the code fulfilling the intent of the developer?
- Does the code do what was expected all the time?

— exceptions get thrown, disks get full, network lines drop, buffers overflow -
is the code still performing as expected?

- Can the code be depended upon?
— Need to know for certain both its strengths and its limitations.
» Does the test document the developers intent?

— An important side-effect of unit testing is that it helps communicate the
code's intended use.
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TDD — General

 An iterative technique to develop software.
 Tests are written before the code itself.
- As much (or more) about design as testing.
— Encourages design from user’s point of view.
— Encourages testing classes/units in isolation — Unit testing.

A test framework is used so that automated testing can be done after every
small change to the code.

» This may be as often as every 5 or 10 minutes.
« Axiom:
— ‘Code that isn’t tested doesn’t work’

— ‘Code that isn’t regression tested suffers from code rot (breaks eventually)’



TDD — General (Contd.)

- As much (or more) about documentation as testing.
— The tests are the documentation of what the code does.
* Must be learned and practiced.
- Consequences:
— Fewer bugs;
— More maintainable code - loosely-coupled, highly-cohesive systems.

— During development, the program always works—it may not do everything
required, but what it does, it does right.

— Breaks the cycle of more pressure == fewer tests (the fewer tests you write, the
less productive you are and the less stable your code becomes).



How is Unit Testing carried out?

- Step 1: Decide how to test the method in question before writing the code
itself

- Step 2: Write the test code itself, either before or concurrently with the
iImplementation code.

- Step 3: Run the test itself, and probably all the other tests in that part of the
system.

« Key Feature of executing unit tests:

— You need to be able to determine at a glance whether all tests are
succeeding/failing. The JUnit Framework will do this for us!
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TDD — Why bother with TDD/Unit Testing

* Significant reductions in defect rates, at the cost of a
moderate increase 1n 1nitial development effort:

generally these overheads are more than offset
by a reduction in effort in projects' final phases.

* Anecdotal evidence suggests that TDD leads to

improved design qualities 1n the code, and more
generally a higher degree of technical quality.

https://www.agilealliance.org/glossary/tdd/
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—Xcuse #1
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“It takes too much time to write the tests”

— The trade-off is not “test now” versus “test later”

— It's linear work now versus exponential work and complexity trying to fix
and rework at the end.
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—Xcuse 1

NO, | DIDN'T
GET THE TESTING DONE.
THE REQUIREMENTS WERE
AMBIGUOUS,

https://www.ca.com/us/products/excuse-free-testing.html




—Xcuse 1

2 (contd.)

Write a failing
feature test
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—XCuse #3

“It takes too long to run the tests”
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—Xcuse #3

“It takes too long to run the tests”

—Separate out the longer-running tests from the short ones.

—Only run the long tests once a day, or once every few days
as appropriate, and run the shorter tests constantly.

—Your code isn’t finished until you have verified it works!
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—Xcuse #4

“It's not developers job to test his/her code”
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—Xcuse #4

“It's not developers job to test his/her code”

—Integral part of developer job is to create working code.

Developer R & QA




—XCUSe #5

“But it compiles!”
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NOVICE PROGRAMMER

—Xcuse #5

I CAN'T
BELIEVE IT
WORKED
FIRST TIME!

“But it compiles!”

—A compiler's blessing is a pretty
shallow compliment. EXPERIENCED PROGRAMMER

I CAN'T
BELIEVE IT
WORKED
FIRST TIME...
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—XCuUSe #6

“We refactor our code so frequently, that the time we invest in
tests just isn't worth it - they are going to change and be
irrelevant anyhow"
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—Xcuse #6

“We refactor our code so frequently, that the time we invest in
tests just isn't worth it - they are going to change and be

irrelevant anyhow*

 How can you be certain you didn’t break anything when
refactoring your code?

* Regression testing is one of the number one reasons for doing
TDD...good regression tests will, almost immediately, show up

un-intended side effects of your code change.

* A good rule is...NEVER refactor without tests!
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http://codesheriff.blogspot.ie/2011/11/excuse-5-frequent-refactoring-excuse.html




-Xcuse #7

“We are such talented programmers, we don’t need tests”

http://codesheriff.blogspot.ie/2011/11/excuse-5-frequent-refactoring-excuse.html




—Xcuse #7/

“We are such talented programmers, we don’t need
tests”

» Everyone has bugs in their code...we are human after
all!

. \e
» Ok, even if you are a “bug-free coder”, what @ e o
about Regression testing in the future by you s e .
and other programmers? >
Q P\\‘e(’bg

http://codesheriff.blogspot.ie/2011/11/excuse-5-frequent-refactoring-excuse.html




