l-service Architectures

Peter Elger
@pelger

So wtfis a p-service ?

‘Sharp’ unit of functionality
Typically around 100 lines of code

Does one thing and one thing only
— And does it well

A u-services architecture is a system built from
the aggregation of LOTS of u-services...

A system compon
Why is that interesting...”?

Things tend to get complicated quickly

* | have a limited cranial capacity
* So I'm ‘big on simple’

Software becomes complex quickly

Fle fot Yiew Project Qpesste ook Window Hep

o[u](9]z]

i Vo] [Ti0%
£

[

<

TC

LVES-Rake-flow-tunnel- Computer «

T($¢;up Errce
@@
oe e rtd EEWO' <hmndsm-l
[RT0Channeish

2l
= &'Fﬂ
N

1 Acquire pressure, temperature dats. Pedform mach feedback <orrrul.

Physical Channel L2
- Fuxed Ports Clusted el
> e
10 :.n.i!tl % v
£
[> v)
.
onts one zeroi ® Run Type CTER
1% i} e o
DRSS Aboiute JEAN]
{1 immediatey | | |
Set airflow pressure regulator
H L]
e Mach Set Pont: BT ero volts, lowest possible flo
0. TC Chan. | - Semoles per rlindd @
5 ¥ it
Pressure Xder, o
SetVotage [BEH, o) LY
3
Al Temp TC {Sample Clock ~ i ==
e BB A Ephack TR

uilding ‘large’ software systems
ecomes exponentially complex

2X 8 rafters
171 247 0C
ta }
q 4
| i
A 400
= ||
-] V. T X Snass
HE § T T ~
A 1 TS P e oy PN
—_— ',|: M b Tmaren
== z:: i o > t ‘ e
— -4 M '. e’ L3 N v
i | ’ 'Y S IS0
1 . |4 A | I
= o ®
Q i~ i . 3 l
14 J - u‘ .
+ 11 Hw- eoe T
A !——Gm). P H-n--.
1 5
| T 3 X
el -3 [7 | R
—

Sections View

Know your enemy

Complexity
Entropy
Coupling

Repetition

Technical Debt

No one ever wrote perfect code, ever.
All software has some level of technical debt

The most successful software systems are those
that effectively manage technical debt

As creators of software we should adopt
architectures and techniques that allow us to
effectively manage technical debt over the entire
lifetime of a system.

Evolution

The Evolution OF Compeder Programmiﬁ La_ﬁiaaief}

0000 06 00 e - . Eoxhude <stdio b~
#nchude <10 h>
aTH ’ “ Cuchude <dos b
) 4 0 00 09 0 C0 T . Snchude <stdiib b
(v Paechude “unng h
Fuhude <teme h>

e Assembler C Fortran C++

S (NN (G -

Architectural Evolution

Mush
Mainframe/terminal
Client Server
N-Tiered

SOA

ESB

L-services ?7?

Layered / OO

. D O Service pool
p-services

| Messaging l

OO0 QQ 000
J) OO

Service pool

Service pool Service pool

Characteristics

Messaging channel
— Direct Http, Queue, Message bus...

Lots of little services
— ~100 loc

Each does one thing only
Multiple instances

Multiple versions

Messages

e Pattern match on messages
 Messages are asynchronous as are responses

* For Example:
{

command: "tweet"
Author:”@pelger”
status:”hello world"

}

Tweet service

If | see a message with this property:

— command:"tweet”

It's Mine!

| don't care how you get it to me...
..and I'll ignore anything else

Simple rules

* Report status

— Each process self reports status

e Die and restart on error

— Don’t attempt error handling just reboot!

e Continuously test the business outputs of the
system

Lifecycle

e Services have short lifetimes

— Add a service, remove/update a service without
affecting the overall system

 Multiple version of the same service can
coexist

e Services are language agnostic

Living software system

Long-lived system; short-lived services

Extremely dynamic with continuous
deployments

5-10 minutes between deployments typical
Accept it is complex (especially for testing)
Acceptance test on business outcomes instead

Key difference

Allows system to ‘Grow’ from the bottom up
— Following simple rules
— Rather than top down planned control

Rapid deployment of individual services
— Isolated change

Written in any language
— Pick the right tool for the job

Think of command line tools v’s Bloated GUI

Systems using p-services

Sunday business post
Social analytics platform

Nearform Hardware Cloud
— Just demonstrated

Fred George
— Forward Labs
— Check out his presentations on youtube!

Microbial

Toolkit that embodies p-service principals

— Based on in the field experiences

Built on node.js

Javascript is particularly well suited to
implementing asynchronous p-services

npm install microbial

Summary

Very, very small

Loosely coupled

Highly Cohesive

Self-execution monitoring of each service
Pattern match on messages

Die and restart on error

Measure the live system

Rapid and continuous deployments

We are discovering through live projects how this approach
allows us to develop and operate systems more effectively.

Questions ?

