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Single-Threaded and Multithreaded Programs
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The Lifecycle of a Thread

- Threads start running, pause, resume, and finally stop
dynamically during program execution

he states of all threads except the thread that the JVM Is
currently executing cannot change

- By default, the JVM tries to distribute control equally to all
threads

- Threads with high priority values tend to preempt lower
priority threads
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State Transition

Diagram of a Thread
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Running a Thread — Method 1

Steps:
1: Implement a class that derives from Thread class

2. Place the code for task into the run method of class

public class MyThread extends Thread
{

public void run ()

{

// Task statements go here
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Running a Thread

3. Create an object of class

MyThread t = new MyThread() ;

4. Call the start method to start the thread.

t.start () ;
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Running a Thread — Method 2

1: Implement a class that implements the Runnable interface

public interface Runnable

{

void run|() ;

}

2. Place the code for task into the run method of class

public class MyRunnable implements Runnable

{

public void run()

{

// Task statements go here
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Running a Thread

3. Create an object of class

Runnable r = new MyRunnable() ;

4. Gonstruct a Thread object for the runnable object.

Thread t = new Thread(r) ;

5. Call the start method to start the thread.

t.start () ;
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—Xample

* A program to print a time stamp and "Hello World" once a

second for ten seconds
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GreetingRunnable QOutline

public class GreetingRunnable implements Runnable

{

private String greeting;

public GreetingRunnable (String aGreeting)
{

greeting = aGreeting;

public void run()

{

// Task statements go here
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Thread Action for GreetingRunnable

 Print a time stamp
+ Print the greeting
- Wait a second

- We can get the date and time by constructing a Date object

Date now = new Date() ;
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Thread Action for GreetingRunnable

- To walt a second, use the sleep method of the Thread class

sleep (milliseconds)

Date now = new Date() ;

- A sleeping thread can generate an interruptedException

- Catch the exception

- Terminate the thread
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Running Threads

sleep puts current thread to sleep for given
number of milliseconds

Thread.sleep(milliseconds)

- When a thread Is interrupted, most common response is to
terminate run
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Generic run Method

{

public void run()

try
{

Task statements

}

catch (InterruptedException exception)

{
}

Clean up, if necessary

40



Gree!

c1ngRunnable. java

public class GreetingRunnable implements Runnable

{
private static final int REPETITIONS = 10;

private static final int DELAY = 1000;
private String greeting;

public GreetingRunnable (String aGreeting)
{

greeting = aGreeting;

public void run()

{
try

{

for (int i

{

Date now = new Date();

1; i <= REPETITIONS; i++)

System.out.println(now + " " + greeting);
Thread. sleep (DELAY) ;

}

catch (InterruptedException exception)

{
}
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To Start the Thread

+ Construct an object of your runnable class

Runnable t = new GreetingRunnable ("Hello World") ;

- Then construct a thread and call the start method.

Thread t = new Thread(r) ;
t.start () ;

42



GreetingThreadTester

public class GreetingThreadTester

{

public static void main(String[] args)

{
GreetingRunnable rl = new GreetingRunnable('"Hello, World!") ;
GreetingRunnable r2 = new GreetingRunnable ("Goodbye, World!") ;
Thread tl = new Thread(rl);
Thread t2 = new Thread(r2);
tl.start () ;
t2.start () ;
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Output
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Thread Scheduler

- The thread scheduler runs each thread for a short amount of
time (a #ime slice)

- Then the scheduler activates another thread

- There will always be slight variations in running times

especially when calling operating system services (e.g. input
and output)

+ There is no guarantee about the order in which threads are
executed
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Terminating Threads

- A thread terminates when its run method terminates

Do not terminate a thread using the deprecated stop
method

Instead, notify a thread that it should terminate

t.interrupt() ;

interrupt does not cause the thread to terminate—it sets
a boolean field in the thread data structure



Terminating Threads

- The run method should check occasionally whether it has
been interrupted

- Use the interrupted method

- An Interrupted thread should release resources, clean up, and exit

public void run()

{
for (int 1 = 1;
i <= REPETITIONS && !Thread.interrupted(); i++)
{

Do work

}
Clean up




Terminating Threads

+ The sleep method throws an
InterruptedException when a
sleeping thread Is interrupted

public void run()

{
try
{
for (int 1i

{

Do work

}
}

{

}
Clean up

catch (InterruptedException exception)

- Catch the exception

- Terminate the thread

1l; 1 <= REPETITIONS; i++)
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