
Produced  
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Computer Science

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

!

mailto:edleastar@wit.ie


Threads



28

Single-Threaded and Multithreaded Programs



29

The Lifecycle of a Thread

• Threads start running, pause, resume, and finally stop 
dynamically during program execution  

• The states of all threads except the thread that the JVM is 
currently executing cannot change 

• By default, the JVM tries to distribute control equally to all 
threads 

• Threads with high priority values tend to preempt lower 
priority threads



30

State Transition Diagram of a Thread



31

Running a Thread – Method 1

Steps: 

1: Implement a class that derives from Thread class  

2: Place the code for task into the run method of class

public class MyThread extends Thread  
{  
   public void run()  
   {  
      // Task statements go here  
      . . .  
   }  
}



32

Running a Thread

3. Create an object of class  
 
 

4. Call the start method to start the thread. 

MyThread t = new MyThread(); 

t.start(); 



33

Running a Thread – Method 2
1: Implement a class that implements the Runnable interface  

!

!

2: Place the code for task into the run method of class

public interface Runnable  
{  
   void run();  
} 

public class MyRunnable implements Runnable  
{  
   public void run()  
   {  
      // Task statements go here  
      . . .  
   }  
}



34

Running a Thread

3. Create an object of class  
 

4. Construct a Thread object for the runnable object.  
 

5. Call the start method to start the thread. 

Runnable r = new MyRunnable(); 

Thread t = new Thread(r);

t.start(); 



35

Example

Thu Dec 28 23:12:03 PST 2004 Hello, World!  
Thu Dec 28 23:12:04 PST 2004 Hello, World!  
Thu Dec 28 23:12:05 PST 2004 Hello, World!  
Thu Dec 28 23:12:06 PST 2004 Hello, World!  
Thu Dec 28 23:12:07 PST 2004 Hello, World!  
Thu Dec 28 23:12:08 PST 2004 Hello, World!  
Thu Dec 28 23:12:09 PST 2004 Hello, World!  
Thu Dec 28 23:12:10 PST 2004 Hello, World!  
Thu Dec 28 23:12:11 PST 2004 Hello, World!  
Thu Dec 28 23:12:12 PST 2004 Hello, World! 

• A program to print a time stamp and "Hello World" once a 
second for ten seconds 



36

GreetingRunnable Outline

public class GreetingRunnable implements Runnable 
{ 
  private String greeting; 
!
  public GreetingRunnable(String aGreeting) 
  { 
    greeting = aGreeting; 
  } 
!
  public void run() 
  { 
    // Task statements go here 
  } 
}



37

Thread Action for GreetingRunnable

• Print a time stamp  

• Print the greeting  

• Wait a second  

• We can get the date and time by constructing a Date object  

Date now = new Date(); 



38

Thread Action for GreetingRunnable

• To wait a second, use the sleep method of the Thread class  

!

• A sleeping thread can generate an InterruptedException  

• Catch the exception  

• Terminate the thread 

Date now = new Date(); 

sleep(milliseconds) 



39

Running Threads

•  sleep puts current thread to sleep for given  
 number of milliseconds   
  

• When a thread is interrupted, most common  response is to 
terminate run 

Thread.sleep(milliseconds) 



40

Generic run Method

public void run()  
{  
   try  
   {  
      Task statements  
   }  
   catch (InterruptedException exception) 
   {  
   }  
   Clean up, if necessary  
} 



41

GreetingRunnable.java
public class GreetingRunnable implements Runnable 
{ 
  private static final int REPETITIONS = 10; 
  private static final int DELAY = 1000; 
  private String greeting; 
!
  public GreetingRunnable(String aGreeting) 
  { 
    greeting = aGreeting; 
  } 
!
  public void run() 
  { 
    try 
    { 
      for (int i = 1; i <= REPETITIONS; i++) 
      { 
        Date now = new Date(); 
        System.out.println(now + " " + greeting); 
        Thread.sleep(DELAY); 
      } 
    } 
    catch (InterruptedException exception) 
    { 
    } 
  } 
}



42

To Start the Thread

• Construct an object of your runnable class  
 
 

• Then construct a thread and call the start method. 

Runnable t = new GreetingRunnable("Hello World"); 

Thread t = new Thread(r);  
t.start();



43

GreetingThreadTester

public class GreetingThreadTester 
{ 
  public static void main(String[] args) 
  { 
    GreetingRunnable r1 = new GreetingRunnable("Hello, World!"); 
    GreetingRunnable r2 = new GreetingRunnable("Goodbye, World!"); 
    Thread t1 = new Thread(r1); 
    Thread t2 = new Thread(r2); 
    t1.start(); 
    t2.start(); 
  } 
}



44

Output

Thu Dec 28 23:12:03 PST 2004 Hello, World!  
Thu Dec 28 23:12:03 PST 2004 Goodbye, World!  
Thu Dec 28 23:12:04 PST 2004 Hello, World!  
Thu Dec 28 23:12:05 PST 2004 Hello, World!  
Thu Dec 28 23:12:04 PST 2004 Goodbye, World!  
Thu Dec 28 23:12:05 PST 2004 Goodbye, World!  
Thu Dec 28 23:12:06 PST 2004 Hello, World!  
Thu Dec 28 23:12:06 PST 2004 Goodbye, World!  
Thu Dec 28 23:12:07 PST 2004 Hello, World!  
Thu Dec 28 23:12:07 PST 2004 Goodbye, World!  
Thu Dec 28 23:12:08 PST 2004 Hello, World!  
Thu Dec 28 23:12:08 PST 2004 Goodbye, World!  
Thu Dec 28 23:12:09 PST 2004 Hello, World!  
Thu Dec 28 23:12:09 PST 2004 Goodbye, World!  
Thu Dec 28 23:12:10 PST 2004 Hello, World!  
Thu Dec 28 23:12:10 PST 2004 Goodbye, World!  
Thu Dec 28 23:12:11 PST 2004 Goodbye, World!  
Thu Dec 28 23:12:11 PST 2004 Hello, World!  
Thu Dec 28 23:12:12 PST 2004 Goodbye, World!  
Thu Dec 28 23:12:12 PST 2004 Hello, World! 



45

Thread Scheduler

• The thread scheduler runs each thread for a short amount of 
time (a time slice)  

• Then the scheduler activates another thread  

• There will always be slight variations in running times 
especially when calling operating system services (e.g. input 
and output)  

• There is no guarantee about the order in which threads are 
executed 



2

Terminating Threads

•  A thread terminates when its run method terminates  

•  Do not terminate a thread using the deprecated stop 
method  

•  Instead, notify a thread that it should terminate  
 

•  interrupt does not cause the thread to terminate–it sets 
a boolean field in the thread data structure 

t.interrupt(); 



3

Terminating Threads

• The run method should check occasionally whether it has 
been interrupted  

• Use the interrupted method  

• An interrupted thread should release resources, clean up, and exit

public void run()  
{  
   for (int i = 1;  
         i <= REPETITIONS && !Thread.interrupted(); i++) 
   {  
      Do work  
   }  
   Clean up  
}



4

Terminating Threads

public void run()  
{  
   try  
   {  
      for (int i = 1; i <= REPETITIONS; i++)  
      {  
         Do work  
      }  
   }  
   catch (InterruptedException exception)  
   {  
   }  
   Clean up  
} 

• The sleep method throws an 
InterruptedException when a 
sleeping thread is interrupted  

• Catch the exception  

• Terminate the thread 



Except where otherwise noted, this content is 
licensed under a Creative Commons 
Attribution-NonCommercial 3.0 License. 

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/


