Design Patterns

MSc in Computer Science

Eamonn de Leastar (edeleastar@wit.ie)

Department of Computing, Maths & Physics
Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

‘ Waterford Institute of Technology
)W INSTITIOID TECNEOLAIOCHTA PHORT LARGE

T —

i

elLearning
support unit


mailto:edleastar@wit.ie

hreads



Single-Threaded and Multithreaded Programs

main thread main thread

e

single-threaded program

active thread
control-transfer—

blocked thread

multithreaded program




The Lifecycle of a Thread

- Threads start running, pause, resume, and finally stop
dynamically during program execution

he states of all threads except the thread that the JVM Is
currently executing cannot change

- By default, the JVM tries to distribute control equally to all
threads

- Threads with high priority values tend to preempt lower
priority threads

29



State Transition

Diagram of a Thread

new threzD

call start

call sleep

@able thread

l

call wait

blocking 1/0 request

blocked th@

sleep time ends

call notify or notify all

thread completes

/0O complete

7

\@ad thread )

30



Running a Thread — Method 1

Steps:
1: Implement a class that derives from Thread class

2. Place the code for task into the run method of class

public class MyThread extends Thread
{

public void run ()

{

// Task statements go here

31



Running a Thread

3. Create an object of class

MyThread t = new MyThread() ;

4. Call the start method to start the thread.

t.start () ;

32



Running a Thread — Method 2

1: Implement a class that implements the Runnable interface

public interface Runnable

{

void run|() ;

}

2. Place the code for task into the run method of class

public class MyRunnable implements Runnable

{

public void run()

{

// Task statements go here

33



Running a Thread

3. Create an object of class

Runnable r = new MyRunnable() ;

4. Gonstruct a Thread object for the runnable object.

Thread t = new Thread(r) ;

5. Call the start method to start the thread.

t.start () ;

34



—Xample

* A program to print a time stamp and "Hello World" once a

second for ten seconds

Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu

Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec

28
28
28
28
28
28
28
28
28
28

23
23
23
23
23
23
23
23
23
23

12:

12

12

12

12

03

: 04
12
:06
12
:08
12

05

07

09

: 10
12:
12:

11
12

PST
PST
PST
PST
PST
PST
PST
PST
PST
PST

2004
2004
2004
2004
2004
2004
2004
2004
2004
2004

Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,

World!
World!
World!
World!
World!
World!
World!
World!
World!
World!

35



GreetingRunnable QOutline

public class GreetingRunnable implements Runnable

{

private String greeting;

public GreetingRunnable (String aGreeting)
{

greeting = aGreeting;

public void run()

{

// Task statements go here

36



Thread Action for GreetingRunnable

 Print a time stamp
+ Print the greeting
- Wait a second

- We can get the date and time by constructing a Date object

Date now = new Date() ;

37



Thread Action for GreetingRunnable

- To walt a second, use the sleep method of the Thread class

sleep (milliseconds)

Date now = new Date() ;

- A sleeping thread can generate an interruptedException

- Catch the exception

- Terminate the thread

38



Running Threads

sleep puts current thread to sleep for given
number of milliseconds

Thread.sleep(milliseconds)

- When a thread Is interrupted, most common response is to
terminate run

39



Generic run Method

{

public void run()

try
{

Task statements

}

catch (InterruptedException exception)

{
}

Clean up, if necessary

40



Gree!

c1ngRunnable. java

public class GreetingRunnable implements Runnable

{
private static final int REPETITIONS = 10;

private static final int DELAY = 1000;
private String greeting;

public GreetingRunnable (String aGreeting)
{

greeting = aGreeting;

public void run()

{
try

{

for (int i

{

Date now = new Date();

1; i <= REPETITIONS; i++)

System.out.println(now + " " + greeting);
Thread. sleep (DELAY) ;

}

catch (InterruptedException exception)

{
}

41



To Start the Thread

+ Construct an object of your runnable class

Runnable t = new GreetingRunnable ("Hello World") ;

- Then construct a thread and call the start method.

Thread t = new Thread(r) ;
t.start () ;

42



GreetingThreadTester

public class GreetingThreadTester

{

public static void main(String[] args)

{
GreetingRunnable rl = new GreetingRunnable('"Hello, World!") ;
GreetingRunnable r2 = new GreetingRunnable ("Goodbye, World!") ;
Thread tl = new Thread(rl);
Thread t2 = new Thread(r2);
tl.start () ;
t2.start () ;

43



Output

Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu

Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec

28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28

23:
23:
23:
23:
23:
23:
23:
23:
23:
23:
23:
23:
23:
23:
23:
23:
23:
23:
23:
23:

12

12

12

12

12

12

12

12

:03
12:

03

:04
12:

05

:04
12:
:06
12:

05

06

:07
12:
:08
12:
:09
12:

07

08

09

:10
12:
12:
12:
12:
12:

10
11
11
12
12

PST
PST
PST
PST
PST
PST
PST
PST
PST
PST
PST
PST
PST
PST
PST
PST
PST
PST
PST
PST

2004
2004
2004
2004
2004
2004
2004
2004
2004
2004
2004
2004
2004
2004
2004
2004
2004
2004
2004
2004

Hello, World!
Goodbye, World!
Hello, World!
Hello, World!
Goodbye, World!
Goodbye, World!
Hello, World!
Goodbye, World!
Hello, World!
Goodbye, World!
Hello, World!
Goodbye, World!
Hello, World!
Goodbye, World!
Hello, World!
Goodbye, World!
Goodbye, World!
Hello, World!
Goodbye, World!
Hello, World!

44



Thread Scheduler

- The thread scheduler runs each thread for a short amount of
time (a #ime slice)

- Then the scheduler activates another thread

- There will always be slight variations in running times

especially when calling operating system services (e.g. input
and output)

+ There is no guarantee about the order in which threads are
executed

45



Terminating Threads

- A thread terminates when its run method terminates

Do not terminate a thread using the deprecated stop
method

Instead, notify a thread that it should terminate

t.interrupt() ;

interrupt does not cause the thread to terminate—it sets
a boolean field in the thread data structure



Terminating Threads

- The run method should check occasionally whether it has
been interrupted

- Use the interrupted method

- An Interrupted thread should release resources, clean up, and exit

public void run()

{
for (int 1 = 1;
i <= REPETITIONS && !Thread.interrupted(); i++)
{

Do work

}
Clean up




Terminating Threads

+ The sleep method throws an
InterruptedException when a
sleeping thread Is interrupted

public void run()

{
try
{
for (int 1i

{

Do work

}
}

{

}
Clean up

catch (InterruptedException exception)

- Catch the exception

- Terminate the thread

1l; 1 <= REPETITIONS; i++)




Waterford Institute of Technology

.o INSTITIOID TECNEOLAIOCHTA PHORT LAIRGE

H©

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

i

elLearning
support unit



