
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Computer Science

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

!

mailto:edleastar@wit.ie

Bridge

Structural Pattern

Bridge Summary

• To avoid a permanent binding between an abstraction and its implementation.

• Particularly when the implementation may be selected or switched at run-
time.

• Both the abstractions and their implementations should be extensible
independently

• Changes in the implementation of an abstraction should have no impact on
clients

3

Bridge Intent

• Intent

• Decouple an abstraction from its implementation so that the two can vary

independently. Often used to achieve platform independence.

• Application-specific code on one side of the bridge (the “business logic”)

uses platform-dependant code on the other side through a well defined
interface.

• Reimplement that interface and the “business” logic doesn’t know or care.

• Reimplement the business logic and the platform-specific interface

implementations don’t care.

• Examples of Bridge in Java are Swing, JFace, SWT, JDBC.

4

Motivation (1)

• When an abstraction can have one of several possible implementations, a
common way to accommodate them is to use inheritance.

• An abstract class defines the interface to the abstraction, and concrete
subclasses implement it in different ways.

• This approach isn't always flexible enough:

• Inheritance binds an implementation to the abstraction permanently, which
makes it difficult to modify, extend, and reuse abstractions and
implementations independently.

5

Example

• Consider the implementation of a portable
Window abstraction in a user interface toolkit.

• This abstraction should enable us to write
applications that work on different windowing
systems (PM & X for example)

• Using inheritance, we could define an
abstract class Window and subclasses
XWindow and PMWindow that implement the
Window interface for the different platforms.

6

Example

• Imagine an IconWindow subclass of Window that specializes the Window
abstraction for icons.

• To support IconWindows for both platforms, we have to implement two new
classes, XIconWindow and PMIconWindow.

• Worse, we'll have to define two classes for every kind of window. Supporting
a third platform requires yet another new Window subclass for every kind of
window.

• It is highly inconvenient to extend the Window abstraction to cover different
kinds of windows or new platforms.

7

Example

• It makes client code platform-dependent, because whenever a client creates
a window, it instantiates a concrete class that has a specific implementation.

• For example, creating an XWindow object binds the Window abstraction to
the X Window implementation, which makes the client code dependent on
the X Window implementation. This, in turn, makes it harder to port the
client code to other platforms.

• Clients should be able to create a window without committing to a concrete
implementation.

• Only the window implementation should depend on the platform on which the
application runs. Therefore client code should instantiate windows without
mentioning specific platforms.

8

Bridge Implementation

9

Bridge Pattern

• The Bridge pattern addresses these problems by putting the Window
abstraction and its implementation in separate class hierarchies.

• There is one class hierarchy for window interfaces (Window, IconWindow,
TransientWindow) and a separate hierarchy for platform-specific window
implementations, with WindowImp as its root.

• The XWindowImp subclass, for example, provides an implementation based
on the X Window System.

• All operations on Window subclasses are implemented in terms of abstract
operations from the WindowImp interface.

• This decouples the window abstractions from the various platform-specific
implementations. We refer to the relationship between Window and
WindowImp as a bridge, because it bridges the abstraction and its
implementation, letting them vary independently.

10

Applicability

• To avoid a permanent binding between an abstraction and its implementation.
This might be the case, for example, when the implementation must be
selected or switched at run-time.	

• Both the abstractions and their implementations should be extensible by
subclassing. In this case, the Bridge pattern lets you combine the different
abstractions and implementations and extend them independently	

• Changes in the implementation of an abstraction should have no impact on
clients

• To share an implementation among multiple objects (perhaps using reference
counting), and this fact should be hidden from the client.

11

Structure

12

• Abstraction : defines the abstraction's interface and maintains a reference
to an object of type Implementor.

• RefinedAbstraction : Extends the interface defined by Abstraction.

• Implementor: defines the interface for implementation classes. This
interface doesn't have to correspond exactly to Abstraction's interface; in
fact the two interfaces can be quite different. Typically the Implementor
interface provides only primitive operations, and Abstraction defines
higher-level operations based

• ConcreteImplementor: implements the Implementor interface and defines
its concrete implementation.

Participants

13

Collaborations
• Abstraction (Window)

• defines the abstraction's interface.

• maintains a reference to an object of type Implementor.

• RefinedAbstraction (IconWindow)

• Extends the interface defined by Abstraction.

• Implementor (WindowImp)

• defines the interface for implementation classes. This interface doesn't

have to correspond exactly to Abstraction's interface; in fact the two
interfaces can be quite different. Typically the Implementor interface
provides only primitive operations, and Abstraction defines higher-level
operations based on these primitives.

• ConcreteImplementor (XWindowImp, PMWindowImp)

• Implements the Implementor interface and defines its concrete

implementation
14

Consequences

• Decoupling interface and implementation. An implementation is not bound
permanently to an interface. The implementation of an abstraction can be
configured at run-time. It's even possible for an object to change its
implementation at run-time.

• This decoupling encourages layering that can lead to a better-structured
system. The high-level part of a system only has to know about Abstraction
and Implementor.

• Improved extensibility. You can extend the Abstraction and Implementor
hierarchies independently.

• Hiding implementation details from clients. You can shield clients from
implementation details, like the sharing of implementor objects and the
accompanying reference count mechanism (if any).

15

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

