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Bridge Summary

• To avoid a permanent binding between an abstraction and its implementation.


• Particularly when the implementation may be selected or switched at run-
time. 


• Both the abstractions and their implementations should be extensible 
independently 


• Changes in the implementation of an abstraction should have no impact on 
clients
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Bridge Intent

• Intent

• Decouple an abstraction from its implementation so that the two can vary 

independently. Often used to achieve platform independence.

• Application-specific code on one side of the bridge (the “business logic”) 

uses platform-dependant code on the other side through a well defined 
interface. 

• Reimplement that interface and the “business” logic doesn’t know or care. 

• Reimplement the business logic and the platform-specific interface 

implementations don’t care. 

• Examples of Bridge in Java are Swing, JFace, SWT, JDBC.
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Motivation (1)

• When an abstraction can have one of several possible implementations, a 
common way to accommodate them is to use inheritance. 


• An abstract class defines the interface to the abstraction, and concrete 
subclasses implement it in different ways. 


• This approach isn't always flexible enough:


• Inheritance binds an implementation to the abstraction permanently, which 
makes it difficult to modify, extend, and reuse abstractions and 
implementations independently.
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Example

• Consider the implementation of a portable 
Window abstraction in a user interface toolkit. 


• This abstraction should enable us to write 
applications that work on different windowing 
systems (PM & X for example)


• Using inheritance, we could define an 
abstract class Window and subclasses 
XWindow and PMWindow that implement the 
Window interface for the different platforms.
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Example

• Imagine an IconWindow subclass of Window that specializes the Window 
abstraction for icons. 


• To support IconWindows for both platforms, we have to implement two new 
classes, XIconWindow and PMIconWindow. 


• Worse, we'll have to define two classes for every kind of window. Supporting 
a third platform requires yet another new Window subclass for every kind of 
window.


• It is highly inconvenient to extend the Window abstraction to cover different 
kinds of windows or new platforms.
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Example

• It makes client code platform-dependent, because whenever a client creates 
a window, it instantiates a concrete class that has a specific implementation. 


• For example, creating an XWindow object binds the Window abstraction to 
the X Window implementation, which makes the client code dependent on 
the X Window implementation. This, in turn, makes it harder to port the 
client code to other platforms.


• Clients should be able to create a window without committing to a concrete 
implementation. 


• Only the window implementation should depend on the platform on which the 
application runs. Therefore client code should instantiate windows without 
mentioning specific platforms.

8



Bridge Implementation
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Bridge Pattern

• The Bridge pattern addresses these problems by putting the Window 
abstraction and its implementation in separate class hierarchies. 


• There is one class hierarchy for window interfaces (Window, IconWindow, 
TransientWindow) and a separate hierarchy for platform-specific window 
implementations, with WindowImp as its root. 


• The XWindowImp subclass, for example, provides an implementation based 
on the X Window System.


• All operations on Window subclasses are implemented in terms of abstract 
operations from the WindowImp interface. 


• This decouples the window abstractions from the various platform-specific 
implementations. We refer to the relationship between Window and 
WindowImp as a bridge, because it bridges the abstraction and its 
implementation, letting them vary independently.

10



Applicability

• To avoid a permanent binding between an abstraction and its implementation. 
This might be the case, for example, when the implementation must be 
selected or switched at run-time.	 


• Both the abstractions and their implementations should be extensible by 
subclassing. In this case, the Bridge pattern lets you combine the different 
abstractions and implementations and extend them independently	 


• Changes in the implementation of an abstraction should have no impact on 
clients


• To share an implementation among multiple objects (perhaps using reference 
counting), and this fact should be hidden from the client.
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Structure
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• Abstraction : defines the abstraction's interface and maintains a reference 
to an object of type Implementor.


• RefinedAbstraction : Extends the interface defined by Abstraction.


• Implementor:  defines the interface for implementation classes. This 
interface doesn't have to correspond exactly to Abstraction's interface; in 
fact the two interfaces can be quite different. Typically the Implementor 
interface provides only primitive operations, and Abstraction defines 
higher-level operations based


• ConcreteImplementor:  implements the Implementor interface and defines 
its concrete implementation.

Participants 
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Collaborations 
• Abstraction (Window) 


• defines the abstraction's interface.

• maintains a reference to an object of type Implementor.


• RefinedAbstraction (IconWindow) 

• Extends the interface defined by Abstraction.


• Implementor (WindowImp) 

• defines the interface for implementation classes. This interface doesn't 

have to correspond exactly to Abstraction's interface; in fact the two 
interfaces can be quite different. Typically the Implementor interface 
provides only primitive operations, and Abstraction defines higher-level 
operations based on these primitives.


• ConcreteImplementor (XWindowImp, PMWindowImp) 

• Implements the Implementor interface and defines its concrete 

implementation
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Consequences

• Decoupling interface and implementation. An implementation is not bound 
permanently to an interface. The implementation of an abstraction can be 
configured at run-time. It's even possible for an object to change its 
implementation at run-time. 


• This decoupling encourages layering that can lead to a better-structured 
system. The high-level part of a system only has to know about Abstraction 
and Implementor.


• Improved extensibility. You can extend the Abstraction and Implementor 
hierarchies independently.


• Hiding implementation details from clients. You can shield clients from 
implementation details, like the sharing of implementor objects and the 
accompanying reference count mechanism (if any).
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