
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Computer Science

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

!

mailto:edleastar@wit.ie

Mediator

Behavioural Pattern

Intent

• Define an object that encapsulates how a set of objects interact.

• Mediator promotes loose coupling by keeping objects from referring to each
other explicitly, and it lets you vary their interaction independently.

3

Motivation (1)

• Object-oriented design
encourages the distribution of
behavior among objects.

• Such distribution can result in an
object structure with many
connections between objects; in
the worst case, every object ends
up knowing about every other.

• Though partitioning a system into
many objects generally enhances
reusability, proliferating
interconnections tend to reduce it
again.

4

Motivation (2)

• Lots of interconnections make it less likely that an object can work without
the support of others—the system acts as though it were monolithic.

• Moreover, it can be difficult to change the system's behavior in any
significant way, since behavior is distributed among many objects.

• As a result, you may be forced to define many subclasses to customize
the system's behavior.

5

 public static void main(String[] args)	
 {	
 SwingQuery query = new SwingQuery();	
 	
 String result = query.ask("How are you?");	
 System.out.println(result);	
 }

Motivation (3) (Holub example)
• The method ask() displays the small

window.

• It accepts an answer and, if enter pressed,
the window shuts down, and ask(…)
returns the entered string.

• If the window is closed then ask(..) returns
an empty string.

• The code encapsulates a complex
interaction with the GUI subsystem, but
the user exercises all this complexity by
doing a simple thing.

• The details are all hidden. Moreover, code
that uses Query is now considerably
simplified.

6

class SwingQuery implements Query	
{	
 public String ask(String question)	
 {	
 final Object done = new Object();	
 final Object init = new Object();	
 final JFrame frame = new JFrame("Query");	
 final JTextField answer = new JTextField();	
 answer.setPreferredSize(new Dimension(200, 20));	
 frame.getContentPane().setLayout(new FlowLayout());	
 frame.getContentPane().add(answer);	
 frame.getContentPane().add(new JLabel(question));	
 answer.addActionListener	
 (new ActionListener()	
 {	
 public void actionPerformed(ActionEvent e)	
 {	
 synchronized (init)	
 {	
 synchronized (done)	
 {	
 frame.dispose();	
 done.notify();	
 }	
 }	
 }	
 });	
...

7

 frame.addWindowListener	
 (new WindowAdapter()	
 {	
 public void windowClosing(WindowEvent e)	
 {	
 synchronized (init)	
 {	
 synchronized (done)	
 {	
 frame.dispose();	
 answer.setText("");	
 done.notify();	
 }	
 }	
 }	
 });	
 synchronized (done)	
 {	
 synchronized (init)	
 {	
 frame.pack();	
 frame.setVisible(true);	
 }	
 try	
 {	
 done.wait();	
 }	
 catch (InterruptedException e)	
 {	
 }	
 }	
 return answer.getText();	
 }	
} 8

SwingQuery Structure

• SwingQuery hides

• ActionListener

• WindowAdapter

• JLabel

• JTextField

• + multi threading issues associated with Swing

9

Applicability

• A set of objects communicate in well-defined but complex ways. The
resulting interdependencies are unstructured and difficult to understand.

• Reusing an object is difficult because it refers to and communicates with
many other objects.

• A behavior that's distributed between several classes should be
customizable without a lot of subclassing.

10

Structure

• Class

!

!

• Object

11

Participants

• Mediator (Not used)

• defines an interface for

communicating with Colleague
objects.

• ConcreteMediator (SwingQuery)

• implements cooperative behavior

by coordinating Colleague
objects.

• knows and maintains its
colleagues.

• Colleague classes

• Subsystem being mediated.

• (JTextField, JLabel,

WindowAdapter, ActionListener)

12

Collaborations

• Colleagues send and receive requests from a Mediator object.

• The mediator implements the cooperative behavior by routing requests
between the appropriate colleague(s).

13

Consequences (1)
• It limits subclassing. A mediator localizes behavior that otherwise would be

distributed among several objects. Changing this behavior requires
subclassing Mediator only; Colleague classes can be reused as is.

• It decouples colleagues. A mediator promotes loose coupling between
colleagues. You can vary and reuse Colleague and Mediator classes
independently.

• It simplifies object protocols. A mediator replaces many-to-many interactions
with one-to-many interactions between the mediator and its colleagues.
One-to-many relationships are easier to understand, maintain, and extend.

14

Consequences (2)

• It abstracts how objects cooperate. Making mediation an independent
concept and encapsulating it in an object lets you focus on how objects
interact apart from their individual behavior. That can help clarify how
objects interact in a system.

• It centralizes control. The Mediator pattern trades complexity of
interaction for complexity in the mediator. Because a mediator
encapsulates protocols, it can become more complex than any individual
colleague. This can make the mediator itself a monolith that's hard to
maintain.

15

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

