
Node.js Training

Richard Rodger	

@rjrodger	

richardrodger.com	

richard.rodger@nearform.com

JavaScript

mailto:richard.rodger@nearform.com

A New Look at JavaScript
• Embracing JavaScript	

• JavaScript Data Structures	

• JavaScript Functions	

• Functional JavaScript	

• JavaScript Objects

Embracing JavaScript
• JavaScript looks like a toy language	

• It has a lot of really bad features:	

• the DOM, eval, with, obfuscated object creation	

• It also has some really great features:	

• it’s standardized under the name ECMAScript, latest version 5.1	

• it’s functional, so you get callbacks and closures	

• it’s prototype-based, so hash maps are baked-in	

• it has a literal data syntax (JSON)	

• it has low code volume, while remaining readable	

• And here’s the killer:	

• You’re stuck with it as the universal language of the web

Embracing JavaScript

JavaScript Data Structures
• The fundamental data structure is the “object”	

• essentially a hash table of string properties
referencing values of any type	

• there are no classes, but each object has a
prototype object that it can inherit properties from	

• there are no arrays; they are just objects with
numbers for properties, a special length property
and some extra methods	

• The best thing about objects is that they can be
written as “literals”, that is, in JSON format.

Object Literals
• Objects are a set of key:value pairs defining properties	

• The keys (property names) are strings (always)	

• and the values can be anything, including other objects (this allows nested data structures)	

• The literal syntax for defining an object is:	

•{ <key1>:<value1>, <key2>:<value2>, ...}

• Example: 	

• var objname = { first_name: 'Richard', last_name: 'Rodger'
}	

• You can then access the values using the following notations:	

• dot notation, where the property name must be a valid identifier:	

•objname.first_name

• square bracket notation, where the property name can be specified using a literal or a
variable:	

•objname['first_name']

•var property_name = 'first_name'; objname[property_name];

Array Literals
• Arrays are an ordered list of values (of any type)	

• The literal syntax is:	

•[<value1>,<value2>,...]

• Example:	

•['foo',true,11,{a:1}]

• You can access elements using standard square bracket notation:	

•my_array[0] // is 'foo'

• They are really just special objects	

• the array indexes are not numbers, but properties - the index number is
converted into a string:	

•my_array['0'] // is also 'foo'

• With a special length property, and some utility methods:	

• push, pop, shift, unshift, join, forEach, ...

JSON format
• Combine object and array literals and you get	

• JSON syntax - JavaScript Object Notation	

• See json.org for a formal specification	

• The ECMA standard defines a utility object for JSON:	

• JSON.parse(<literal string>) returns a
JavaScript object defined by literal string in JSON format	

• use this for input	

• JSON.stringify(obj) renders the JavaScript
object as a string in JSON format	

• use this for output

JavaScript Functions
• Fundamental unit of code	

• they are also objects, and can have properties	

• Can be created ...	

• as declarations	

• as expressions	

• as methods	

• anonymously	

• Can be called ...	

• as functions	

• as methods	

• as constructors	

• dynamically using the call and apply methods

Function Declarations
• Defines a function using the syntax:	

•function name(...) { ... }

• Defining a function creates a new variable scope - variables declared inside
the function cannot be accessed outside the function	

• JavaScript does not have block scope, only function scope	

• All variables defined within the function are effectively “hoisted” to the
start of the function, as if all the var statements were written first	

• You can use a variable inside a function before declaring it with var -
not that this is a good idea	

• Function definitions are themselves “hoisted” to the top of the current
scope	

• So you can use the function before it is defined	

• Useful for top level and utility functions	

• But you can also define functions inside other functions

Function Expressions
• Defines a function using the syntax:	

•var name = function(...) { ... }

• Unlike function declarations, there is no “hoisting”	

• You can’t use the function before it is defined, because the variable
referencing the function has no value yet	

• Useful for dynamically created functions	

• You can also use the syntax	

•var name = function name(...) { ... }

• There is no difference, but your stack traces will now include the
name of the function	

• Once defined, function expressions are called in the same way as
function declarations:	

• name(argument1, argument2, ...)

Methods
• The same pattern of function definition as function

expressions	

• in this case, the functions are properties of an
object:	

!

• You can redefine the functions of an object at
any time, or add new ones:	

!

• They must be defined before use

var obj = {
 name: function(x) { return x + 1 }
}

obj.name = function(x) { return x + 2 }
obj.newfunc = function(y) { return y + 3 }

Anonymous Functions
• You can define a function without giving it a name:	

•function(...) {}

• You do this for convenience when you need to provide a function
that will get called when an event happens later	

• DOM click handlers are a good example:	

•element.onclick = function(...)
{ ... }

• You also do this for “callbacks” - when a function needs another
function as an argument	

• setTimeout handlers are a good example:	

•setTimeout(function(){ ... }, 1000)

Function Invocation
• When a function is called (“invoked”), it has access to two special variables:	

• this - a reference to the global object	

• unless the function is a method, or apply is used	

• arguments - a list of the arguments given to the function	

• the arguments variable is not an array (unfortunately), but it does have a length
property, so you can iterate through the arguments using a for loop, as if it were an
array	

•for(var i = 0; i < arguments.length; i++)

• this allows you to define functions that have a variable number of arguments	

• The function also has access to a “closure”	

• The closure is all variables in scope when the function is defined:

var foo = true
function print_foo() {
 console.log(foo)
}
foo = false
print_foo() // prints false

Method Invocation
• When a function is a property of an object, it is known as a “method”	

• The special this variable references the object	

!

!

!

• Watch out when using callbacks, the this variable may no longer refer to
your object. In this case, explicitly reference your object using a new
variable, self	

!

!

!

!

var obj = {
 foo: 11,
 print: function() {
 console.log(this.foo)
 }
}
obj.print() // prints 11

var obj = {
 foo: 11,
 print: function() {
 var self = this
 setTimeout(function() {
 console.log(this.foo) // this != obj
 console.log(self.foo)
 },1)
 }
}
obj.print() // prints undefined 11

Constructor Invocation
• The function call is preceded by the new operator	

•function Foo() { ... }

•var foo = new Foo()

• When the function executes, a new object is created	

• The this variable points at the new object, and is the default
return value of the function	

• Functions intended to be used in this way are given a capital
letter by convention, as they can be thought of as traditional
classes (they aren’t)	

• This “feature” will be examined in more detail shortly...

Invocation using apply
• Functions inherit a number of utility methods from the built-in Function

object	

• The apply method is particularly interesting, and is used like so:	

•myfunction.apply(anobject, argument_array)

• This code calls the myfunction function, setting the this variable equal to
the object anobject, passing the argument_array as the arguments.	

• You can dynamically call any function with any list of arguments, and you can
make the function a method of any object you like	

!

!

!

• Useful trick - turn the arguments object in a real array with	

•var args_array = [].slice.apply(arguments)

function print_foo(bar) {
 console.log(this.foo+bar)
}
var obj = {foo:1}
print_foo.apply(obj,[2]) // prints 3

Functional Programming
• Mantra: everything is a Function	

• versus: everything is an Object	

• Based on the Lambda Calculus...	

• which is a way of talking about “computable” things:	

• Calculate PI: computable? Yes.	

• Will this random program ever stop? No.	

• Frequently uses anonymous functions	

• often as event handlers, like anonymous inner
classes in Java

Functional JavaScript
• As with object-oriented patterns, there are

functional patterns:	

• Callbacks	

• Dynamic functions	

• Recursion	

• The underscore library

Callback Functions
• Pass a function into another function as an argument.

The function you passed in is “called back” later by
the other function.	

!

!

!

• The passed-in function is normally anonymous and
defined in-place	

• The most common API pattern for Node.js modules

fs.readFile('mine.txt', function(err, data) {
 if(err) return console.log('error:'+err)

 doStuff(data)
)

Dynamic Functions
• Dynamically create functions when you need them	

!

!

!

!

!

!

• Useful for wrapping other functions	

• handle common cases	

• such as error handling	

• extend functionality	

• add a throttle to database requests to reduce load

function err(win) {
 return function(err, data) {
 if(err) return console.log('error:'+err);

 win(data)
 }
}
!
fs.readFile('mine.txt', err(function(data) {
 doStuff(data)
}))

Recursive Functions
• A function that calls itself	

!

!

!

!

• Often provides a more concise solution than
iterating	

• Beware stack overflow however!

function printObject(obj,indent) {
 for(property in obj) {
 var value = obj[property]
 if('object' === typeof(value)) {
 console.log(indent+property+':')
 printObject(value, ' '+indent)
 }
 else {
 console.log(indent+property+':'+value)
 }
 }
}

The underscore library
• Provides a range of utility function for functional programming	

• See underscorejs.org	

• Examples:	

•_.each(array, function(element) { ... })

• applies a function to each element of an array	

•_.map(array, function(element)
{ return ... })

• updates each value of an array	

•_.reduce(array, function(start,element)
{ return ...})

• reduces an array down to one value - e.g summing

JavaScript: Objects
• Object-oriented, but not Class-oriented	

• Everything is an Object	

•var one = 1

•one.toString() // == '1'

• All objects have a prototype	

• This is Object.prototype by default	

• gives you .toString(), .hasOwnProperty(), etc.	

• When you ask an object for a property, it will	

• return the value of the property	

• if the object has that property	

• OR: look for the property in it’s prototype object	

• and so on, up the chain of prototypes

How Prototype Works
• You must create a Function object to access the prototype directly (otherwise it is hidden):	

•var f = function(){}

•f.prototype // == Object.prototype

• Creating a prototype chain use the new operator:	

•f.prototype = {red:1}

•var o = new f()

•o.red // == 1

• JavaScript objects:	

• inherit properties from their prototypes	

• in this case the hasOwnProperty method returns false:	

•o.hasOwnProperty('red') // == false

• but they can also redefine a property:	

•o.red = 2

•o.hasOwnProperty('red') // == true

• this overrides the prototype

The new Operator
• JavaScript attempts to hide it’s prototypical nature using the new

operator	

• It’s just setting up the prototype chain:	

• var me = new Person(‘My Name’)	

• step 1: create a new function (me), and set it’s prototype to be
Person.prototype	

• step 2: call the Person function, setting the this variable to be
the new function (me), with any arguments passed in (‘My
Name’)	

• step 3: if the new function (me) returns an object, return that
object, otherwise return the new function (me)	

• The purpose of this logic is provide syntax sugar that gives the
appearance of a Class-based language

Object.create
• The new operator is still required	

• It is the only way to gain access to the prototype chain	

• The ECMAScript standard defines a new method Object.create, for creating objects	

• Object.create sets up the prototype chain in a sane manner - you pass in the object
that should be the prototype, and you get back a new object with this prototype:	

•var a = {red:1}

•var b = Object.create(a)

•b.red == 1

• Object.create has a direct implementation, that hides the new operator:

if (typeof Object.create !== 'function') {
 Object.create = function (o) {
 function F() {}
 F.prototype = o;
 return new F();
 };
}

Inheritance
• Unlike class-based languages, inheritance is not

“baked-in”	

• You use prototypes to implement different styles
of inheritance	

• There are trade-offs:	

• variable conflict safety	

• memory usage / performance	

• different conceptual models	

• Different models are used by different libraries

Code Reuse in JavaScript
• Inheritance is useful in class-based languages	

• creating an inheritance hierarchy enables different
behaviors	

• Inheritance is not as useful in JavaScript	

• There are no classes	

• You can use “duck” typing	

• You can modify objects dynamically	

• You can use functional techniques to achieve code reuse	

• Deep inheritance hierarchies in JavaScript are a code smell	

• You need to refactor

An Example Structure

• A set of dialog windows, with shared functions

Dialog

UserDialog

RegisterDialog LoginDialog ProfileDialog

.show()	

.hide()

.load()	

.save()

Inheritance Patterns
• Pseudoclassical

• new Dialog and Dialog.prototype	

• Prototypical

• Object.create	

• Functional

• private members	

• Composition

• mixing in functionality

Pseudoclassical
• Traditional form that you’ll see in older material on the web	

• an attempt to simulate classes:	

•function Class() { ... }

•Class.prototype.method = function() { ... }

•var instance = new Class()

• Surprisingly unsafe - if you forget the new operator you pollute the global
namespace	

• the default value of this is the global object	

• Rather ironically requires you to use the prototype property to define
methods	

• The imitation breaks down when you specify super classes	

• Calling overridden “super class” methods is difficult	

• This pattern is memory efficient - may be suitable for large numbers of low
complexity “data” objects

Pseudoclassical Example

!
function Dialog(title_in) {
 this.title = title_in
}
Dialog.prototype.show = function() {
 log(this.title,'show')
}
!
var dialog = new Dialog('dialog')
dialog.show()
!
!
!
function UserDialog(title_in) {
 this.title = title_in
}
UserDialog.prototype = new Dialog()
!
UserDialog.prototype.load = function() {
 log(this.title,'load')
}
!
var userdialog = new UserDialog('userdialog')

Prototypical
• Uses Object.create to generate new objects on demand

from a sample object (an example of the “class”)	

• a more natural fit with JavaScript	

• does require a different conceptual model	

• any object can be a “class”	

• does not provide private members	

• The this variable may not always be safe to use,
especially within callbacks inside methods	

• leads to boilerplate code in every method:	

•var self = this

Prototypical Example

!
var dialog = Object.create({
 show: function() {
 log(this.title,'show')
 }
})
dialog.title = 'dialog'
!
dialog.show()
!
!
!
var userdialog = Object.create(dialog)
userdialog.title = 'userdialog'
userdialog.load = function() {
 log(this.title,'load')
}
!
userdialog.show()
userdialog.load()

Functional
• Use a function to create an closure	

• any variables you declare inside the function are “private”	

• Return a custom object	

• means you can use the “class” with or without the new operator	

• Traditional constructors are easier to use	

• You can call the “super class” constructor	

• Create your custom object by create a new instance of the super class	

• Less memory efficient	

• All functions are copied to each instance	

• You can’t put them in the prototype if you also want access to the
closure	

• More suitable for larger business logic or single instance management
objects like views or controllers.

Functional Example
function Dialog(title_in) {
 var self = {} !
 var title = title_in !
 self.show = function() {
 log(title,'show')
 } !
 self.title = function() {
 return title
 } !
 return self
} !
var dialog = Dialog('dialog')
dialog.show() !!!
function UserDialog(title_in) {
 var self = Dialog(title_in) !
 self.load = function() {
 log(self.title(),'load')
 } !
 return self
} !
var userdialog = UserDialog('userdialog')
userdialog.show()
userdialog.load()

Composition
• JavaScript is dynamic	

• You can inject methods and properties into any object
whenever you like	

• Instead of a “super class”, just provide a set of methods
and properties that deliver a given behavior - this is
known as a “mixin”	

• Suitable for generic behaviors such as event handling	

• Implementation is relatively easy - just set properties	

• Using a library such as underscore makes it even easier,
and handles override conflicts:	

• _.extend(A,B) overrides A with B’s properties

Composition Example
var _ = require('underscore')
!
var dialog = Object.create({
 show: function() {
 log(this.title,'show')
 }
})
dialog.title = 'dialog'
!
dialog.show()
!
!
!
var userdialog = _.extend(
 dialog,
 {
 title:'userdialog',
 load: function() {
 log(this.title,'load')
 }
 }
)
!
userdialog.show()
userdialog.load()

Tools
!

!

• Always use one of these:	

• jshint	

• jslint

Where Next?
• Buy this book:

