Node.js Training
JavaScript
Richard Rodger
@rjrodger

richardrodger.com
richard.rodger@nearform.com

@)nearForm

mailto:richard.rodger@nearform.com

A New Look at JavaScript

® Embracing JavaScript
® JavaScript Data Structures
® JavaScript Functions
® Functional JavaScript

® JavaScript Objects

@:.nearForm

Embracing JavaScript

® JavaScript looks like a toy language
® |t has a lot of really bad features:

e the DOM, eval, with, obfuscated object creation

® |t also has some really great features:
® it's standardized under the name ECMAScript, latest version 5.1
® it’s functional, so you get callbacks and closures
® t's prototype-based, so hash maps are baked-in
® it has a literal data syntax (JSON)

® it has low code volume, while remaining readable

® And here’s the killer:

® You're stuck with it as the universal language of the web

@:.nearForm

Embracing JavaScript

JavaScrlpt

The Defin

JavaScript Data Structures

® The fundamental data structure is the “object”

® essentially a hash table of string properties
referencing values of any type

® there are no classes, but each object has a
prototype object that it can inherit properties from

® there are no arrays; they are just objects with
numbers for properties, a special length property
and some extra methods

® The best thing about objects is that they can be
written as “literals”, that is, in JSON format.

@:.nearForm

Object Literals

® Objects are a set of key:value pairs defining properties
® The keys (property names) are strings (always)
® and the values can be anything, including other objects (this allows nested data structures)

® The literal syntax for defining an object is:

® { <keyl>:<valuel>, <key2>:<value2>, ...}
® Example:
® var objname = { first name: 'Richard', last name: 'Rodger'

}

® You can then access the values using the following notations:
® dot notation, where the property name must be a valid identifier:

® objname.first name

® square bracket notation, where the property name can be specified using a literal or a
variable:

® objname['first name']

® var property name = 'first name'; objname[property name];

@:.nearForm

Array Literals

® Arrays are an ordered list of values (of any type)
® The literal syntax is:
® [<valuel>,<value2>,...]
® Example:
® ['"foo',true,1l1l,{a:1}]
® You can access elements using standard square bracket notation:

eny array[0] // is 'foo'

® They are really just special objects

® the array indexes are not numbers, but properties - the index number is
converted into a string:

emy array['0'] // is also 'foo'

® With a special length property, and some utility methods:

® push, pop, shift, unshift, join, forEach, ... ‘o}" nearForm

JSON format

® Combine object and array literals and you get
® |SON syntax - JavaScript Object Notation
® See json.org for a formal specification
® The ECMA standard defines a utility object for JSON:

® JSON.parse (<literal string>) returnsa
JavaScript object defined by literal string in JSON format

® use this for input

® JSON.stringify(obj) renders the JavaScript
object as a string in JSON format

® use this for output

@:.nearForm

JavaScript Functions

® Fundamental unit of code
® they are also objects, and can have properties
® Can be created ...
® as declarations
® as expressions
® as methods
® anonymously
® Can be called ...
® 3s functions
® as methods
® as constructors

® dynamically using the call and apply methods

@:.nearForm

Function Declarations

® Defines a function using the syntax:

® function name(...) { ... }

® Defining a function creates a new variable scope - variables declared inside
the function cannot be accessed outside the function

® JavaScript does not have block scope, only function scope

® All variables defined within the function are effectively “hoisted” to the
start of the function, as if all the var statements were written first

® You can use a variable inside a function before declaring it with var -
not that this is a good idea

® Function definitions are themselves “hoisted” to the top of the current
scope

® So you can use the function before it is defined
® Useful for top level and utility functions

® But you can also define functions inside other functions @..nearForm

Function Expressions

Defines a function using the syntax:
® var name = function(...) { ... }
Unlike function declarations, there is no “hoisting”

® You can’t use the function before it is defined, because the variable
referencing the function has no value yet

Useful for dynamically created functions
You can also use the syntax

® var name = function name(...) { ... }

® There is no difference, but your stack traces will now include the
name of the function

Once defined, function expressions are called in the same way as
function declarations:

¢ name(argumentl, argument?2, ...) "‘.nearForm

Methods

® The same pattern of function definition as function
expressions

® in this case, the functions are properties of an
object:

var obj = {
name: function(x) { return x + 1 }

}

® You can redefine the functions of an object at
any time, or add new ones:

obj.name = function(x) { return x + 2 }
obj.newfunc = function(y) { return y + 3 }

® They must be defined before use

@:.nearForm

Anonymous Functions

® You can define a function without giving it a name:

® function(...) {}

® You do this for convenience when you need to provide a function
that will get called when an event happens later

® DOM click handlers are a good example:

® clement.onclick = function(...)

{ ...}

® You also do this for “callbacks” - when a function needs another
function as an argument

® setlimeout handlers are a good example:

® setTimeout (function(){ ... }, 1000)

@:.nearForm

Function Invocation

® When a function is called (“invoked”), it has access to two special variables:

® this - a reference to the global object
® unless the function is a method, or apply is used
® arguments - a list of the arguments given to the function

® the arguments variable is not an array (unfortunately), but it does have a length
property, so you can iterate through the arguments using a for loop, as if it were an

array

® for(var 1 = 0; 1 < arguments.length; 1++)
® this allows you to define functions that have a variable number of arguments

® The function also has access to a “closure”

® The closure is all variables in scope when the function is defined:

var foo = true

function print foo () {
console.log(foo)

}

foo = false

print foo() // prints false

@:.nearForm

Method Invocation

® When a function is a property of an object, it is known as a “method”

® The special this variable references the object

}
}

var obj = {
foo: 11,
print: function() {

console.log(this.foo)

obj.print() // prints 11

® Watch out when using callbacks, the this variable may no longer refer to
your object. In this case, explicitly reference your object using a new

variable, self

var obj = {
foo: 11,
print: funct
var self =
setTimeout
console.
console.
},1)
}
}
obj.print() //

ion() {
this
(function() {
log(this.foo) // this !'= obj
log(self.foo)

prints undefined 11

‘:}:’nearForm

Constructor Invocation

The function call is preceded by the new operator

® function Foo() { ... }
® var foo = new Foo()
When the function executes, a new object is created

The this variable points at the new object, and is the default
return value of the function

Functions intended to be used in this way are given a capital
letter by convention, as they can be thought of as traditional
classes (they aren’t)

This “feature” will be examined in more detail shortly...

@)nearForm

Invocation using apply

Functions inherit a number of utility methods from the built-in
object

Function

The apply method is particularly interesting, and is used like so:

® myfunction.apply(anobject, argument array)

® This code calls the myfunction function, setting the this variable equal to
the object anobject, passing the argument_array as the arguments.

You can dynamically call any function with any list of arguments, and you can

make the function a method of any object you like

function print foo(bar) ({
console.log(this.foo+bar)

}

var obj = {foo:1}

print foo.apply(obj,[2]) // prints 3

Useful trick - turn the arguments object in a real array with

® var args array = [].slice.apply(arguments)

@)nearForm

Functional Programming

® Mantra: everything is a Function
® versus: everything is an Object
® Based on the Lambda Calculus...
® which is a way of talking about “computable” things:
® (Calculate Pl: computable!? Yes.
® Will this random program ever stop? No.
® Frequently uses anonymous functions

® often as event handlers, like anonymous inner

classes in Java
"}.nearForm

Functional JavaScript

® As with object-oriented patterns, there are
functional patterns:

® Callbacks
® Dynamic functions
® Recursion

® The underscore library

@:.nearForm

Callback Functions

® Pass a function into another function as an argument.
The function you passed in is “called back™ later by
the other function.

fs.readFile('mine.txt', function(err, data) {
if(err) return console.log('error:'+err)

doStuff (data)
)

® The passed-in function is normally anonymous and
defined in-place

® The most common API pattern for Node.js modules

@)nearForm

Dynamic Functions

® Dynamically create functions when you need them

function err(win) {
return function(err, data) {
if(err) return console.log('error:'+terr);

win (data)
}
}

fs.readFile('mine.txt', err(function(data) {
doStuff (data)

1)

® Useful for wrapping other functions
® handle common cases
® such as error handling

® extend functionality

® add a throttle to database requests to reduce load g
Q.nearForm

Recursive Functions

® A function that calls itself

function printObject (obj,indent) {
for (property in obj) {
var value = obj[property]
if('object' === typeof (value)) {

console.log(indent+property+':"')
printObject (value, ' '+indent)

}

else {

console.log(indent+property+':'+value)
}
}
}

® Often provides a more concise solution than
iterating

® Beware stack overflow however!

‘:}:’nearForm

The underscore library

® Provides a range of utility function for functional programming
® See underscorejs.org

® Examples:

® _cach(array, function(element) { ... })

® applies a function to each element of an array

® .map(array, function(element)
{ return ... })

® updates each value of an array

® .reduce(array, function(start,element)
{ return ...})

® reduces an array down to one value - e.g summing

@:.nearForm

JavaScript: Objects

® Object-oriented, but not Class-oriented

® Everything is an Object

® var one = 1
® one.toString () // == '1"
® All objects have a prototype
® This is Object.prototype by default
® gives you .toString(), .hasOwnProperty(), etc.
® When you ask an object for a property, it will

® return the value of the property

® if the object has that property
® OR:look for the property in it’s prototype object

® and so on, up the chain of prototypes

How Prototype VVorks

® You must create a Function object to access the prototype directly (otherwise it is hidden):

® var f = function () {}

® f prototype // == Object.prototype
® Creating a prototype chain use the new operator:

® f . prototype = {red:1}

® var o = new T ()

®o.red // == 1
® JavaScript objects:

® inherit properties from their prototypes

® in this case the hasOwnProperty method returns false:

® 0.hasOwnProperty ('red') // == false

® but they can also redefine a property:

®O.red = 2
® 0.hasOwnProperty('red') // == true

® this overrides the prototype

The new Operator

® JavaScript attempts to hide it’s prototypical nature using the new
operator

® |t’s just setting up the prototype chain:
® var me = new Person(‘My Name’)

® step |:create a new function (me), and set it’s prototype to be
Person.prototype

® step 2: call the Person function, setting the this variable to be

the new function (me), with any arguments passed in (‘My
Name’)

® step 3:if the new function (me) returns an object, return that
object, otherwise return the new function (me)

® The purpose of this logic is provide syntax sugar that gives the
appearance of a Class-based language

Object.create

® The new operator is still required
® |t is the only way to gain access to the prototype chain
® The ECMAScript standard defines a new method Object.create, for creating objects

® Object.create sets up the prototype chain in a sane manner - you pass in the object
that should be the prototype, and you get back a new object with this prototype:

® var a = {red:1}
® var b = Object.create (a)
®pb.red == 1

® Object.create has a direct implementation, that hides the new operator:

if (typeof Object.create !'== 'function') {
Object.create = function (o) {
function F() {}
F.prototype = o;
return new F();

};

Inheritance

® Unlike class-based languages, inheritance is not
“baked-in”

® You use prototypes to implement different styles
of inheritance

® There are trade-offs:
® variable conflict safety
® memory usage / performance
® different conceptual models

® Different models are used by different libraries

Code Reuse in JavaScript

® |nheritance is useful in class-based languages

® creating an inheritance hierarchy enables different
behaviors

® |nheritance is not as useful in JavaScript
® There are no classes
® You can use “duck” typing
® You can modify objects dynamically
® You can use functional techniques to achieve code reuse
® Deep inheritance hierarchies in JavaScript are a code smell

® You need to refactor

An Example Structure

® A set of dialog windows, with shared functions

: .show()

Joad()
.save()

RegisterDialog| | LoginDialog | |ProfileDialog

UserDialog

Inheritance Patterns

® Pseudoclassical
® new Dialog and Dialog.prototype
® Prototypical
® Object.create
® Functional
® private members
® Composition

® mixing in functionality

Pseudoclassical

® Traditional form that you’ll see in older material on the web

® an attempt to simulate classes:

® function Class () { ... }
® Class.prototype.method = function() { ... }
® var 1nstance = new Class ()

® Surprisingly unsafe - if you forget the new operator you pollute the global
namespace

® the default value of this is the global object

® Rather ironically requires you to use the prototype property to define
methods

® The imitation breaks down when you specify super classes
® Calling overridden “super class” methods is difficult

® This pattern is memory efficient - may be suitable for large numbers of low
complexity “data” objects

Pseudoclassical

Example

function Dialog(title _in) {
this.title = title in

}

Dialog.prototype.show = function() {
log(this.title, 'show')

}

var dialog = new Dialog('dialog')
dialog.show ()

function UserDialog(title in) ({
this.title = title in

}
UserDialog.prototype = new Dialog()

UserDialog.prototype.load = function() {
log(this.title, 'load’)

}

var userdialog = new UserDialog('userdialog')

Prototypical

® Uses Object.create to generate new objects on demand
from a sample object (an example of the “class”™)

® a more natural fit with JavaScript

® does require a different conceptual model
® any object can be a “class”

® does not provide private members

® The this variable may not always be safe to use,
especially within callbacks inside methods

® |eads to boilerplate code in every method:

® var self = this

Prototypical Example

var dialog = Object.create ({
show: function() {
log(this.title, 'show')
}

})
dialog.title = 'dialog'

dialog.show ()

var userdialog = Object.create (dialoqg)

userdialog.title = 'userdialog'

userdialog.load = function() {
log(this.title, 'load’)

}

userdialog.show ()
userdialog.load()

Functional

® Use a function to create an closure

® any variables you declare inside the function are “private”
® Return a custom object

® means you can use the “class” with or without the new operator
® Traditional constructors are easier to use

® You can call the “super class” constructor

® Create your custom object by create a new instance of the super class

® |ess memory efficient
® All functions are copied to each instance

® You can’t put them in the prototype if you also want access to the
closure

® More suitable for larger business logic or single instance management
objects like views or controllers.

Functional Example

function Dialog(title_in) {
var self = {}

var title title_in

self.show = function() {
log(title, 'show')
}

self.title = function() {
return title

}

return self

}

var dialog = Dialog('dialog')
dialog.show()

function UserDialog(title in) {
var self = Dialog(title in)

self.load = function() {
log(self.title(), 'load')

}

return self

}

var userdialog = UserDialog('userdialog')
userdialog.show ()
userdialog.load()

Composition

® JavaScript is dynamic

® You can inject methods and properties into any object
whenever you like

® |nstead of a “super class”, just provide a set of methods
and properties that deliver a given behavior - this is
known as a “mixin”

® Suitable for generic behaviors such as event handling
® |mplementation is relatively easy - just set properties

® Using a library such as underscore makes it even easier,
and handles override conflicts:

® .extend(A,B) overrides A with B’s properties

Composition Example

var _ = require('underscore')
var dialog = Object.create ({
show: function() {
log(this.title, 'show')
}

})
dialog.title = 'dialog'

dialog.show ()

var userdialog = .extend(
dialog,
{
title: 'userdialog’',
load: function() {
log(this.title, 'load')
}
}
)

userdialog.show ()
userdialog.load()

Tools

® Always use one of these:
® jshint

® jslint

Where Next?

® Buy this book:

The Good Parts

O,RE".LYo mooo'- PRESS Douglas Crockford

@)nearForm

