
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Computer Science

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

!

mailto:edleastar@wit.ie

Android Threads

Threads in Android

• When an application is launched, the system creates a
thread of execution for the application, called "main."

• This thread is in charge of dispatching events to the
appropriate user interface widgets, including drawing
events.

• It is also the thread in which your application interacts
with components from the Android UI toolkit (components
from the android.widget and android.view packages). As
such, the main thread is also sometimes called the UI
thread.

Threads and UI Components

• The system does not create a separate thread for each
instance of a component.

• All components that run in the same process are
instantiated in the UI thread, and system calls to each
component are dispatched from that thread.

• Consequently, methods that respond to system callbacks
(such as onKeyDown() to report user actions or a lifecycle
callback method) always run in the UI thread of the
process.

ANR Dialog

• When your app performs intensive work in response to user interaction,
this single thread model can yield poor performance unless you implement
your application properly.

• Specifically, if everything is happening in the UI thread, performing long
operations such as network access or database queries will block the
whole UI.

• When the thread is blocked, no events can be dispatched, including
drawing events. From the user's perspective, the application appears to
hang.

• Even worse, if the UI thread is blocked for more than a few seconds
(about 5 seconds currently) the user is presented with the infamous
"application not responding" (ANR) dialog.

Worker Threads

• To retain application ‘responsiveness’ do not block the UI thread.

• If you have operations to perform that are not instantaneous, you
should make sure to do them in separate threads ("background"
or "worker" threads).

• At first, this seems to work fine, because it creates a new
thread to handle the network operation.

• However, it violates the second rule of the single-
threaded model: do not access the Android UI toolkit
from outside the UI thread—this sample modifies the
ImageView from the worker thread instead of the UI
thread.

• This can result in undefined and unexpected behavior,
which can be difficult and time-consuming to track down.

Android Solution

• To fix this problem, Android offers several ways to access
the UI thread from other threads. Here is a list of methods
that can help:

• Activity.runOnUiThread(Runnable)

• View.post(Runnable)

• View.postDelayed(Runnable, long)

View.postDelayed(Runnable, long)

• Now this implementation is thread-safe: the network operation is done
from a separate thread while the ImageView is manipulated from the UI
thread.

• However, as the complexity of the operation grows, this kind of code
can get complicated and difficult to maintain. To handle more complex
interactions with a worker thread, you might consider using a Handler in
your worker thread, to process messages delivered from the UI thread.

Async Tasks

• AsyncTask allows you to perform asynchronous work on your
user interface. It performs the blocking operations in a worker
thread and then publishes the results on the UI thread, without
requiring you to handle threads and/or handlers yourself.

• To use it, you must subclass AsyncTask and implement the
doInBackground() callback method, which runs in a pool of
background threads. To update your UI, you should implement
onPostExecute(), which delivers the result from
doInBackground() and runs in the UI thread, so you can safely
update your UI. You can then run the task by calling execute()
from the UI thread.

• Now the UI is safe and the code is simpler, because it separates
the work into the part that should be done on a worker thread
and the part that should be done on the UI thread.

Async Tasks
• You should read the AsyncTask reference for a full understanding on how to use

this class, but here is a quick overview of how it works:

• You can specify the type of the parameters, the progress values, and the final
value of the task, using generics

• The method doInBackground() executes automatically on a worker thread

• onPreExecute(), onPostExecute(), and onProgressUpdate() are all invoked on
the UI thread

• The value returned by doInBackground() is sent to onPostExecute()

• You can call publishProgress() at anytime in doInBackground() to execute
onProgressUpdate() on the UI thread

• You can cancel the task at any time, from any thread

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

