
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

Higher Diploma in Science in Computer Science

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

!

mailto:edleastar@wit.ie

Web Presentation & Session Patterns

Web Presentation Patterns

• Clear advantages:

• no client software to install, a common UI approach,
and easy universal access.

• However, intimate knowledge of HTTP now seen as
important. Previous attempt to ‘abstract away’ HTTP to
lower layers have incurred excessive complexity costs

• Modern web framework fully expose HTTP, and assume
developers are comfortable with the primary mechanisms

Web Presentation Patterns

• Model View Controller

• Page Controller

• Front Controller

• Template View

Mode View Controller
• Controller Model View

Controller (MVC) is one of
the most quoted (and most
misquoted) patterns around.

• It started as a framework
developed by Trygve
Reenskaug for the Smalltalk
platform in the late 1970s.

• Since then it has played an
influential role in most UI
frameworks and in the
thinking about UI design.

Splits user interface interaction
into three distinct roles.

MVC in pacemaker-service

• Routes define acceptable
URLs and map them to
Actions

• Actions interact with Domain
logic and Render..

• Views, which are served to
the browser

Template View

• Compose a Dynamic Web
page as you do a static
page but

• put in markers that can
be resolved into calls to
gather dynamic
information.

• Since the static part of
the page acts as a
template for the
particular response

Renders information into HTML by
embedding markers in an HTML

page.

pacemaker-service Template Method

• Templates in Play are
compiled as scala
functions

• Compile time check +
potential efficiency
benefits

@()	!
@main("Welcome to Pacemaker") {	
 @welcome_menu()	
 	
 <section class="ui raised segment">	
 <div class="ui grid">	
 <aside class="ui six wide column">	
 	
 </aside>	
 <div class="ui ten wide column fluid form">	
 <div class="ui stacked segment">	
 <form action="/authenticate" method="POST">	
 <h3 class="ui header">Log-in</h3>	
 <div class="field">	
 <label>Email</label>	
 <input placeholder="Email" type="text" name="email">	
 </div>	
 <div class="field">	
 <label>Password</label>	
 <input type="password" name="password">	
 </div>	
 <button class="ui blue submit button">Login</button>	
 </form>	
 </div>	
 </div>	
 </div>	
</section>	
}

public class Accounts extends Controller	
{	
 //...	
 public static Result login()	
 {	
 return ok(accounts_login.render());	
 }	
}	

Sessions

• Client Session State

• Stores session state on the client.

• Server Session State

• Keeps the session state on a server system in a serialized form

• Database Session State

• Stores session data as committed data in the database.

Play : Sessions and Flash Scopes

• If you have to keep data across multiple HTTP requests, you can save them in the
Session or Flash scopes.

• Data stored in the Session are available during the whole user Session,

• Data stored in the Flash scope are available to the next request only.

• Session and Flash data are not stored by the server but are added to each subsequent
HTTP request, using the cookie mechanism.

• This means that the data size is very limited (up to 4 KB) and that you can only store
string values.

• Cookie values are signed with a secret key so the client can’t modify the cookie data.

• The Session is not intended to be used as a cache. If you need to cache some data
related to a specific Session, you can use the Play built-in cache mechanism and use
store a unique ID in the user Session to keep them related to a specific user.

Session Object Encapsulates Session mechanisms

• Use email as application specific
session id

• On each request, retrieve this id
to determine current user details

public class Accounts extends Controller	
{	
 	
 public static Result logout()	
 {	
 session().clear();	
 return ok(welcome_main.render());	
 }	
!
 public static Result authenticate() 	
 {	
 Form<User> boundForm = loginForm.bindFromRequest();	
 if(loginForm.hasErrors()) 	
 {	
 return badRequest(accounts_login.render());	
 } 	
 else 	
 {	
 session("email", boundForm.get().email);	
 return redirect(routes.Dashboard.index());	
 }	
 }	
}

# Secret key	
# ~~~~~	
# The secret key is used to secure cryptographics functions.	
# If you deploy your application to several instances be sure to use the same key!	
application.secret=":qEJLP]R2D8prCCf9`@F4d1q_`URxLT3CmxucR7ued`rfspew?X?S_J;P;`VsZ^R"

application.conf

public class Dashboard extends Controller	
{	
 public static Result index()	
 {	
 String email = session().get("email");	
 User user = User.findByEmail(email);	
 return ok(dashboard_main.render(user.activities));	
 }	
}

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

