
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc Computer Science

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

!

mailto:edleastar@wit.ie

Data Source

Data Source

• Communicating with other systems that carry out tasks
on behalf of the application.

• These can be transaction monitors, other applications,
messaging systems, etc…

• For most enterprise applications this is a database that is
primarily responsible for storing persistent data.

Database Pattern Categories

• Data Source
Architectural
Patterns

• Object-Relational
Behavioural
Patterns

• Object-Relational
Structural Patterns

Data Source Architectural Patterns

• Drive the way in which the domain logic talks to the database.

• The choice made are far-reaching for the design and thus difficult to
refactor

• Patterns

• Table Data Gateway

• Active Record

• Row Data Gateway

• Data Mapper

Table Data Gateway
An object that acts as a Gateway to a
database table. One instance handles
all the rows in the table.

• Mixing SQL in application logic can cause several problems:

• Many developers aren't comfortable with SQL, and many who are
comfortable may not write it well.

• Database administrators need to be able to find SQL easily so they can
figure out how to tune and evolve the database.

• A Table Data Gateway holds all the SQL for accessing a single table or
view: selects, inserts, updates, and deletes.

• Other code calls its methods for all interaction with the database.

Active Record
An object that wraps a row in a database
table or view, encapsulates the database
access, and adds domain logic on that data

• An object carries both data and
behavior.

• Much of this data is persistent and
needs to be stored in a database.

• Active Record uses the most obvious
approach, putting data access logic in
the domain object.

• This way all people know how to read
and write their data to and from the
database.

Data Source
Architectural Patterns
in Pacemaker Play
!
Active Record

• Static methods
encapsulate all
access to User table

public class User extends Model	
{	
 @Id	
 @GeneratedValue	
 public Long id;	
 public String firstname;	
 public String lastname;	
 public String email;	
 public String password;	
 	
 @OneToMany(cascade=CascadeType.ALL)	
 public List<Activity> activities = new ArrayList<Activity>();	
 	
 //... 	!
 public static User findByEmail(String email)	
 {	
 return User.find.where().eq("email", email).findUnique();	
 }	
 	
 public static User findById(Long id)	
 {	
 return find.where().eq("id", id).findUnique();	
 }	
 	
 public static List<User> findAll()	
 {	
 return find.all();	
 }	
 	
 public static void deleteAll()	
 {	
 for (User user: User.findAll())	
 {	
 user.delete();	
 }	
 } 	!
 public static Model.Finder<String, User> 	
 find = new Model.Finder<String, User>(String.class, User.class);	
}

Object-Relational Behavioural Patterns

• How to get the various objects to load and save themselves to the databases you
read objects and modify them, you have to ensure that the database state you're
working with stays consistent.

• If you read some objects, it's important to ensure that the reading is isolated so
that no other process changes any of the objects you've read while you're working
on them.

• Otherwise, you could have inconsistent and invalid data in your objects.

• Patterns

• Identity Map

• Unit of Work

• Lazy Load

Identity Map

• An Identity Map keeps a record
of all objects that have been
read from the database in a
single business transaction.

• Whenever you want an object,
you check the Identity Map first
to see if you already have it.

• Avoids problem whereby data
from the same database
record into two different
objects

• Also, may improve efficiency

Ensures that each object gets loaded only once
by keeping every loaded object in a map.
Looks up objects using the map when referring
to them.

Unit of Work

• If you change the database with each
change to your object model this can
lead to lots of very small database calls

• Furthermore it requires you to have a
transaction open for the whole
interaction, which is impractical if you
have a business transaction that spans
multiple requests.

• A Unit of Work keeps track of everything
you do during a business transaction
that can affect the database, and
resolve all outstanding changes when
the task is concluded.

Maintains a list of objects affected by a
business transaction and coordinates the
writing out of changes and the resolution of
concurrency problems.

Lazy Load

• For loading data from a database into
memory it's convenient to load the
objects that are related to the object of
interest.

• However, if you take this to its logical
conclusion, you reach the point where
loading one object can have the effect of
loading a huge number of related
objects.

• A Lazy Load interrupts this loading
process, leaving a marker in the object
structure so that if the data is needed it
can be loaded only when it is used

An object that doesn't contain all of
the data you need but knows how to
get it.

Object-Relational
Behavioural Patterns
in Pacemaker Play
!

• pacemaker-play
uses ebean JPA
provider

• Which implements a
full ranger of
Behavioural patterns

Object-Relational Structural Patterns

• Primarily concerned with the way objects and relations handle links

• Two main problems:

• Objects handle links by storing references that are held by the runtime of
either memory-managed environments or memory addresses. Relational
databases handle links by forming a key into another table.

• Objects can easily use collections to handle multiple references from a single
field, while normalization forces all relation links to be single valued. This
leads to reversals of the data structure between objects and tables.

• An order object naturally has a collection of line item objects that don't need
any reference back to the order. However, the table structure is the other way
around—the line item must include a foreign key reference to the order since
the order can't have a multivalued field.

Object-Relational Structural Patterns

• Identity Field

• Foreign Key Mapping

• Association Table Mapping

• Dependent Mapping

• Embedded Value

• Serialized LOB

• Single Table Inheritance

• Class Table Inheritance

• Concrete Table Inheritance

• Inheritance Mappers

• Most of these patterns have been
absorbed into Object Relational Mapping
frameworks

• This include 4 mapping annotations:

• OneToMany

• ManyToOne

• OneToOne

• ManyToMany

• + a range of other annotations to support
sophisticated mapping schemes

Major Object-
Relational
Structural
Patterns
specified by
JPA 2 and
implemented
by bean

public class User extends Model	
{	
 @Id	
 @GeneratedValue	
 public Long id;	
 public String firstname;	
 public String lastname;	
 public String email;	
 public String password;	
 	
 @OneToMany(cascade=CascadeType.ALL)	
 public List<Activity> activities = new ArrayList<Activity>();	
 	
 //... 	!
 public static User findByEmail(String email)	
 {	
 return User.find.where().eq("email", email).findUnique();	
 }	
 	
 public static User findById(Long id)	
 {	
 return find.where().eq("id", id).findUnique();	
 }	
 	
 public static List<User> findAll()	
 {	
 return find.all();	
 }	
 	
 public static void deleteAll()	
 {	
 for (User user: User.findAll())	
 {	
 user.delete();	
 }	
 } 	!
 public static Model.Finder<String, User> 	
 find = new Model.Finder<String, User>(String.class, User.class);	
}

OneToMany, ManyToOne, ManyToMany

• Subtitle

17

@Entity	
public class Division extends Model	
{	
 @Id	
 @GeneratedValue	
 public Long id;	
 public String name;	
 	
 @OneToMany(cascade=CascadeType.ALL)	
 public List<Club> membersnew ArrayList<Club>();	
 	
 public Division(String name)	
 {	
 this.name = name;	
 }	
} @Entity	

public class Sponsor extends Model	
{	
 @Id	
 @GeneratedValue	
 public Long id;	
 public String name;	
 	
 @ManyToMany (mappedBy="sponsors")	
 public List<Club> support new ArrayList<Club>();	
 	
 public Sponsor(String name)	
 {	
 this.name = name;	
 }	
}

@Entity	
public class Club extends Model	
{	
 @Id	
 @GeneratedValue	
 public Long id;	
 public String name;	
 	
 @OneToMany(mappedBy="club", cascade=CascadeType.ALL)	
 public List<Player> players = new ArrayList<Player>();	!
 @ManyToMany	
 public List<Sponsor> sponsors;	
 	
 public Club(String name)	
 {	
 this.name = name;	
 }	
}

@Entity	
public class Player extends Model	
{	
 @Id	
 @GeneratedValue	
 public Long id;	
 public String name;	
 	
 @ManyToOne	
 public Club club;	!
 public Player(String name)	
 {	
 this.name = name;	
 }	
 	
 public String toString()	
 {	
 return name;	
 }	
 	
 public static Player findByName(String name)	
 {	
 return find("name", name).first();	
 } 	
}

OneToMany, ManyToOne, ManyToMany

• Subtitle

19

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

