
Where’s my
Architecture?

Chris Chedgey

Structure101

Discovering/defining architecture
• Real architecture

• Existing codebase structure

• Well-structured containment

• Creating well-structured
containment

• Levelization

• Making it real

+ Examples

About Structure101 Inc.

Structure101
• Since 2000/2007

• Team in Ireland, France, India, Spain,
Canada, …

• Web+channel sales

“Structure101 shaved months of
calendar time and man years of

effort off the project”
 Bill Jackson, Netflix

Why Structure?
• When a codebase grows beyond a certain size, without a guiding

architecture, developers start drowning in an expanding sea of source files

• This is a huge, pervasive driver of cost which impacts all development
activities

• Discovering defining an architecture for an existing code base is a much
lower cost and risk than struggling on… or starting over

• But this has required a new kind of tool →	Structure101

“Well-structured software is delivered in half the time,
at half the cost, with 8x less bugs”

US Air Force study.

Architecture – organizing
complexity

• Well organized containment model

• Inter-container dependency rules

• Real?

• Maps to code

• Validated

Real Architecture
• Map/blueprint for developers

• Phased testing and release

• Divide work across organizations, teams,
individuals

• Modularity: interfaces + info hiding

• Reuse or replace subsystems or layers

• Impact/regression control

• Help new developers

• …

• Agile Engineering

Controlling Architecture

• New project

• Define architecture that maps to the evolving codebase

• Communicate, enforce, evolve

• Existing codebase

• Discover/define architecture that maps to the evolving codebase

• Communicate, enforce, evolve

The structure of a codebase

What we have (raw material)

• Thousands of source files

• Countless interdependencies

• Not an “architecture”

1. Implementation

What we have

• Packages, jars, Maven
projects, …

• Helps to find files

• But is it an “architecture”?

2. Physical organization

What we have
2. Physical organization

• Packages, jars, Maven
projects, …

• Helps to find files

• But is it an “architecture”?

2. Physical organization
What we have

• Packages, jars, Maven
projects, …

• Helps to find files

• But is it an “architecture”?

• Not usually an “architecture”

What do we need?

?

• What is it?

• How do we get it?

• How do we make it real??
3. “Architecture”

AlignConform

“Well-structured containment”

Containment
• Divide and conquer

• Code → method →
class → package →
subsystem → …

• “Fat” = too much in
one place

• Grow and divide

Containment creates  
dependency

• Different containment
• Very different dependency
• Containment is key to

controlling dependency

Containment model 1

Containment model 2

Dependency creates complexity  
 Roger Sessions: • Law 3. Complexity is driven by interdependencies.

• Law 10. Complexity is an undesirable architectural attribute of an IT
system.

• Reliability: Most IT failures are due to complexity.

• Auditability: complex systems are extremely difficult to audit for regulatory
compliance.

• Security: complexity increases the chances of fraud and vandalism.

• Alignment: complexity results in poor alignment between IT systems and
business needs.

• Cloud: complexity results in inefficient use of cloud resources.

• Maintainability: complexity makes system maintenance much more difficult.

• Agility: complexity makes change much more difficult.

• Scalability: complex systems are hard to scale up when user demand
exceeds expectations..

Cumulative Component
Dependency (CCD)

- John Lakos

Dependency is cumulative
“In software architecture,

resource constraint is not the big
expense right now...

it's coupling”
-Neal Ford, Thoughtworks

“Law 8. Complexity increases exponentially”
-Roger Sessions

Cycles explode dependency

• CCD = (1*1) + (11*2) + (7*3) + …

• < 164

• CCD = 362

• = 1,296 !!!

“Cyclic dependencies have
the greatest capacity to
increase the overall cost

of developing and
maintaining a system”

- John Lakos

So “well-structured containment”
is…

• No “tangled” containers

• No “fat” containers

• … a foundation for
“architecture”

• Modules/Rules

• Communication

• Enforcement

• Controlled evolution

HOW DO WE GET IT?
“Well-structured containment”

?

Implementation

Using source files

• Recursively group cohesive
clusters of files

• Bust or isolate large file-level
tangles

• Can be partly automated

Implementation Physical
organization

Using physical organization

• Restructure/refactor

• Disentangle

• Preserve familiar structures

• Guided/manual reorganization

• Can be harder

Implementation Physical
organization

Draw on both implementation and
existing physical organization

• Use the physical organization
where it is reasonably well-
structured

• Build a new structure where it
isn’t

Building containment from
implementation up

• Find “cohesive clusters” of
source files

• (use automation)

• Wrap them into containers

• Find cohesive clusters of
containers

• Wrap them into higher level
containers

• Repeat

Restructuring physical
organization

Key concept: Levelization

Levelization 

De
pe

nd
en

ci
es Levelizable

Levelization 

Levelizable

“Tangle” - Every vertex reachable
from every other vertex

Levelizable

Structure101

Making it real

The Levelized Structure Map (LSM)

• Designed specifically for containment
modelling

• Expand/collapse depth of scope

• Auto-groups tangles, cohesive clusters,
disconnected clusters

• Filter items and dependencies to reduce noise

• Can be manipulated interactively or
automatically to create well-structured
containment model

• Items are always levelized at every scope and
after every change

The Architecture Diagrams
• Communicate important aspects of model with team

• Define rules for a containment model

• Cells map to code by patterns

• Dependencies should flow down

• Cell positioning expresses many rules, visually,
intuitively

• Can have many diagrams

• You define layering and visibility – not changed
automatically

• Used to check code changes at edit and build times

Step 1: Discover and define your
architecture
• Bootstrap step

• Use LSM to create “well-structured containment model”

• Get “Fat” and “Tangles” close to zero

• Use the Architecture diagrams to define dependency rules for your
model

• Share your architecture

Step 2: Architecture-guided
development

• Communicate

• Compile-time checking

• Build-time checking

• Reporting

• Evolve
• Update architecture when required

• Adjust architecture ahead of
development

