
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Communications Software

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Further GUI Patterns

Sources & Context

Separated Presentation

• A form of layering where presentation code and domain code in separate
layers with the domain code unaware of presentation code.

‣ Review all the data and behavior in a system identifying code involved in
the presentation. Presentation code would manipulate GUI widgets and
structures only.

‣ We then divide the application into two logical modules with all the
presentation code in one module and the rest in another module.

• The layers are a logical and not a physical construct. Java packages are a
useful separation mechanism

�3

Separated Presentation - Synchronization

• It will be necessary for the domain to notify the presentation if any changes
occur.

• 2 common solutions:

‣ Flow Synchronization

‣ Observer Synchronization

• Both of these solutions attempt will ensure that the model and the views are
rendering the same information.

• However, both must ensure that Separated Presentation is preserved.

�4

Model View Controller

• The Model/View/Controller (MVC) triad of classes is used to build user
interfaces in Smalltalk-80.

• MVC consists of three kinds of objects:

• Model is the application object

• View is its screen presentation

• Controller defines the way the user interface reacts to user input

• Before MVC, user interface designs tended to lump these objects together.
MVC decouples them to increase flexibility and reuse

�5

Synchronization

• MVC synchronizes views and models via ObserverSynchronization.

• A view must ensure that its appearance reflects the state of the model.

• Whenever the model's data changes, the model notifies views that depend
on it.

• In response, each view gets an opportunity to update itself.

• This approach allows multiple views to be attached views to a model to
provide different presentations.

�6

View / Model

�7

Controller

• MVC encapsulates response and
model update mechanisms in a
Controller object.

• The Controller is the “glue”
between the Model and the View.

• The View renders model updates
on the screen, but is not permitted
to modify the model.

• The View forwards events to the
controller

• The Controller does not have
access to the screen but can
modify the model.

�8

Patterns in MVC: A “Composed” Pattern

• Observer:

• Decouple objects so that changes to one can affect any number of others

without requiring the changed object to know details of the others

• The pattern that decouples views from models.

• Strategy:

• An object that represents an algorithm. Used when an algorithm is to be

replaced either statically or dynamically, or when the algorithm has
complex data structures that you want to encapsulate.

• The pattern encapsulates the View-Controller relationship- the Controller is
a strategy used by the View.

• Other Patterns:

• Composite: Views can be nested. E.g. a panel of buttons and tables can

be implemented as a view containing “composite” button views and table
views.

• Façade: the Model may in fact be a Façade to a more complex model.
�9

MVC & Web Frameworks	

• MVC has been successfully adapted into web application domain.

• MVC implementations are central to Spring, Wicket, Java Server Faces and a
large number of similar frameworks...

• In Rich Clients (GUI) applications it has been less successful...

• see [http://martinfowler.com/eaaDev/uiArchs.html] for a more detailed history
of MVC.

�10

http://martinfowler.com/eaaDev/uiArchs.html%5D

Model View Presenter (MVP)

• Can be considered to be a updating of MVC for modern GUI development.

• Also a “Composed” pattern:

• Separated Presentation

• Observer Synchronization

• Passive View

• Supervising Controller

�11

Passive View

• View is made completely passive and is no longer responsible for updating
itself from the model.

• Views are simply painted by a GUI Designer, and accessors are provided to
retrieve the controls for initialization elsewhere.

• This leaves the view completely “passive” - no initialization, no event handlers
no interesting behaviour of any kind.

• All of this behaviour is moved to an associated Supervising Controller/
Presenter.

�12

Supervising Controller/Presenter

• A Supervising Controller has two primary responsibilities: input response and
partial view/model synchronization.

• For input response the user gestures are handled initially by the screen
widgets, however all they do in response is to hand these events off to the
controller/presenter, which handles all further logic.

• For model/view synchronization, the controller/presenter can employ
ObserverSynchronization.

�13

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

