
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Communications Software

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

GUI Synchronization

• Flow Synchronisation

• Observer Synchronisation

�3

Flow Synchronization

• Flow Synchronization is appropriate for simple navigation styles.

‣ Each time you do something that changes state that's shared across
multiple screens, you tell each screen to update itself.

‣ Main problem: every screen is somewhat coupled to the other the other
screens in the application.

• Two Common Styles UI where FlowSynchronization is appropriate:

• Root & Child

• Wizard

�4

Root & Child

• A root window that is open for the whole
application.

• When you want more detailed information
you open a child window, which is often
modal.

• With Flow Synchronization, update the root
whenever you close a child. If you do this in
the root screen the child doesn't need to be
aware of the root.

�5

Wizard

• A sequence of screens in order.

• Each screen is modal and movement from one screen to another involved

closing the old screen and opening another.

• Flow Synchronization:

‣ update the data on closing a screen and load the fresh data when opening

the next screen.

‣ also possible to have a wizard sequence of modal children with a root

screen where closing the last child updates the root.
�6

• Main Window is the Root with
three children:

‣ ContactListPanel

‣ ContactDialog

‣ About

• ContactListPanel and
ContactDialog in turn have a single
child:

‣ ContactPanel

�7

Flow Synchronization in a Desktop App

�8

Flow
Synchronisation in
pacemaker-android

�9

public class CreateActivity extends android.app.Activity	
{	
 private Button createActivityButton;	
 private TextView activityType;	
 private TextView activityLocation;	
 private NumberPicker distancePicker;	
 private ArrayList<Activity> activities = new ArrayList<Activity>();	
 	
 @Override	
 protected void onCreate(Bundle savedInstanceState)	
 {	
 //…	
 }	
 	
 public void createActivityButtonPressed (View view) 	
 { 	
 double distance = distancePicker.getValue();	
 Activity activity	
 = new Activity (activityType.getText().toString(), 	
 activityLocation.getText().toString(), distance);	
!
 activities.add(activity);	
 Log.v("Pacemaker", "CreateActivity Button Pressed with " + distance);	
 }	
!
 public void listActivityButtonPressed (View view) 	
 {	
 Log.v("Pacemaker", "List Activityies Button Pressed");	
 Intent intent = new Intent(this, ActivitiesList.class);	
 Bundle bundle = new Bundle();	
 bundle.putParcelableArrayList("activities", activities);	
 intent.putExtras(bundle);	
 startActivity (intent);	
 }	

Flow Synchronization : When to Use it

• With Flow Synchronization orchestrating views can become complex if there
are an unconstrained number of windows associated with a model.

• Any change on any screen needs to trigger other screens to update. Doing
this through explicit calls to other screens makes screens very
interdependent.

• Despite its limitations, Flow Synchronization does have its place. It works well
providing the navigational flow of the user interface is simple and only one or
two screen are active at the same time.

• Web user interfaces are effectively a sequence of screens and thus work
effectively with Flow Synchronization.

�10

Observer Synchronisation

• An application with multiple screens may display presentations of a common
model.

• If a change is made to the model through one of these screens, all of the
other screens must update correctly.

• However you don't want each screen to know about the others, because that
would increase the complexity of the screens and make it harder to add new
ones.

• Observer Synchronization allows the screens to “observe” a model, and have
the model propagate changes to interested screens.

• Any change in one screen propagates to that domain oriented data and
thence to the other screens.

�11

Observer Pattern

• Have objects (Observers) that want to know when an event happens, attach
themselves to another object (Subject) that is actually looking for it to occur.

• When the event occurs, the subject tells the observers that it occurred.

�12

Observer Pattern

• Each screen, with its associated screen state, acts as an Observer on a
common area of session data.

• All changes to the session data result in events which the screens listen to
and respond by reloading from the session data.

• Once you have this mechanism set up, then you can ensure synchronization
simply by coding each screen to update the session data.

• Even the screen that makes the change doesn't need to refresh itself
explicitly, since the observer mechanism will trigger the refresh in the same
way as if another screen made the change.

�13

Granularity

• The biggest issue in this design is deciding what granularity of events to
use and how to set up the propagating and observer relationships.

• At the very fine-grained level each bit of domain data can have separate
events to indicate exactly what changed. Each screen registers for only
the events that may invalidate that screen's data.

• The most coarse grained alternative is to use an Event Aggregator to
funnel all events into a single channel. That way each screen does a reload
if any piece of domain data changes, whether or not it would have
affected the screen.

• The trade-off is between complexity and performance:

‣ The coarse-grained approach is much simpler to set up and less likely
to breed bugs (apart from serialization!)

‣ However it leads to lots of unnecessary refreshes of the screen, which
might impact performance.

�14

Fowler Advice

• Start coarse grained and introduce appropriate fine-grained mechanisms
only when needed after measuring an actual performance problem

• Events tend to be hard to debug since you can't see the chain of invocations
by looking at the code.

‣ As a result it's important to keep the event propagation mechanism as
simple as you can, which is why Fowler favours coarse-grained
mechanisms.

‣ A good rule of thumb is to think of your objects as layered and to only
allow observer relationships between layers.

‣ So one domain object should not observe another domain object, only
presentation objects should observe domain objects.

�15

Fine-grained Approach: PropertyChangeSupport

�16

PropertyChangeEvent

�17

firePropertyChange

�18

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

