Design Patterns

MSc in Communications Software

Eamonn de Leastar (edeleastar@wit.ie)

Department of Computing, Maths & Physics
Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Waterford Institute of Technology o elLearning

cr‘\ o7} INSTITIOID THCNEOLAIOCHTA PHORT LARGE su pport unit

-.V-'_—-a;

mailto:edleastar@wit.ie

GUI Synchronization

* Flow Synchronisation

« Observer Synchronisation

Flow Synchronization

- Flow Synchronization is appropriate for simple navigation styles.

» Each time you do something that changes state that's shared across
multiple screens, you tell each screen to update itself.

» Main problem: every screen is somewhat coupled to the other the other
screens in the application.

- Two Common Styles Ul where FlowSynchronization is appropriate:
* Root & Child
- Wizard

Root & Child

« A root window that is open for the whole
application.

« When you want more detailed information
you open a child window, which is often
modal.

- With Flow Synchronization, update the root
whenever you close a child. If you do this in
the root screen the child doesn't need to be
aware of the root.

(Build In ~ Build Out Action |

Effect

Direction Order

Delivery Duration

't More Options

”,2“ — m
| SWr &

QuickTime PowerPaint PDF Images Flash HTML iPod

Wizard

Create an HTML document that can be viewed with Safari or another web browser.

Slides: () All
() Erom: to:

" | Create an image for each stage of builds

™ Include navigation controls
(Home, Previous and Next)

Format: | PNG (high quality) ?]

/ Cancel \ f» Next. .. _\

« A sequence of screens in order.

« Each screen is modal and movement from one screen to another involved
closing the old screen and opening another.

* Flow Synchronization:

» update the data on closing a screen and load the fresh data when opening
the next screen.

» also possible to have a wizard sequence of modal children with a root
screen where closing the last child updates the root.

 Main Window is the Root with

three children:

» ContactListPanel

» ContactDialog

» About

« ContactListPanel and

ContactDialog in turn have a single

child:

» ContactPanel

-low Synchronization in a Desktop App

File Edit Help

First Name
Last Name
Email
1D
Nickname
First Name
First Name
Last Name
Last Name
Email
e OO0 SWT Dialog Email
\"
o 1D
o - B
) virtual lea ID Nickname
N e_cnilionm®e .
/ 2 Ylf\ ! Nickname
£
FRSTN Ok Cancel
You are at: vie.wit.ie
Close

-~
I®! Pacemaker

1®! ActivitiesList

Activities
: Sign up for the Pacemaker walk fridge 20.0
Login
Enter details below walk tv 19.0
Sign up ‘First name
Email o _
. . Enter Activity Details
Login to Donation Password
You must be reigstered
walk
Email
Password Register | M
Signin o
Distance
19

Flow
Synchronisation in .
pacemaker-android Hesie Ay 8

ublic class CreateActivity extends android.app.Activit . .
? Y PP Y "3' ActivitiesList

private Button createActivityButton;
private TextView activityType; o
private TextView activitylocation; Activities
private NumberPicker distancePicker;
private ArraylList<Activity> activities = new ArraylList<Activity>(Q); walk fridge 20.0
@0verride
protected void onCreate(Bundle savedInstanceState) walk . 19.0
{
¥ i
public void createActivityButtonPressed (View view) Enter Activity Details
{
double distance = distancePicker.getValue(); o
Activity activity IEnterAchnytypem

= new Activity (activityType.getText().toString(),
activitylLocation.getText().toString(), distance); .

Enter Location...

activities.add(activity);

Log.v("Pacemaker", "CreateActivity Button Pressed with " + distance);

} 20
/;ublic void listActivityButtonPressed (View view)) Distance
{ 0

Log.v("Pacemaker", "List Activityies Button Pressed");
Intent intent = new Intent(this, Activitieslist.class); o
Bundle bundle = new Bundle(); Create Activity 1
bundle.putParcelableArraylList("activities"”, activities);
intent.putExtras(bundle); o _
startActivity (intent); Activities List

-
o

Flow Synchronization : When to Use it

- With Flow Synchronization orchestrating views can become complex if there
are an unconstrained number of windows associated with a model.

* Any change on any screen needs to trigger other screens to update. Doing
this through explicit calls to other screens makes screens very
interdependent.

 Despite its limitations, Flow Synchronization does have its place. It works well
providing the navigational flow of the user interface is simple and only one or
two screen are active at the same time.

« Web user interfaces are effectively a sequence of screens and thus work
effectively with Flow Synchronization.

10

Observer Synchronisation

An application with multiple screens may display presentations of a common
model.

If a change is made to the model through one of these screens, all of the
other screens must update correctly.

However you don't want each screen to know about the others, because that
would increase the complexity of the screens and make it harder to add new
ones.

Observer Synchronization allows the screens to “observe” a model, and have
the model propagate changes to interested screens.

Any change in one screen propagates to that domain oriented data and
thence to the other screens.

11

Observer Pattern

- Have objects (Observers) that want to know when an event happens, attach
themselves to another object (Subject) that is actually looking for it to occur.

« When the event occurs, the subject tells the observers that it occurred.

Subject
observers Observer
attach(Observer)
detach(Observer update)
notify()
for (Observer observer. observers)
{
observer.update()
} g
ConcreteSubject ConcreteObserver
bject
getState() su
setState() ,Q update()
(]
[
subjectState !observerState

]
]
!
!
[}
[}
/)
2

observerState = subject.getState() ﬁ

Observer Pattern

« Each screen, with its associated screen state, acts as an Observer on a
common area of session data.

* All changes to the session data result in events which the screens listen to
and respond by reloading from the session data.

- Once you have this mechanism set up, then you can ensure synchronization
simply by coding each screen to update the session data.

* Even the screen that makes the change doesn't need to refresh itself
explicitly, since the observer mechanism will trigger the refresh in the same
way as if another screen made the change.

13

Granularity

- The biggest issue in this design is deciding what granularity of events to
use and how to set up the propagating and observer relationships.

- At the very fine-grained level each bit of domain data can have separate
events to indicate exactly what changed. Each screen registers for only
the events that may invalidate that screen's data.

« The most coarse grained alternative is to use an Event Aggregator to
funnel all events into a single channel. That way each screen does a reload
If any piece of domain data changes, whether or not it would have
affected the screen.

- The trade-off is between complexity and performance:

» The coarse-grained approach is much simpler to set up and less likely
to breed bugs (apart from serialization!)

» However it leads to lots of unnecessary refreshes of the screen, which
might impact performance.

14

Fowler Advice

- Start coarse grained and introduce appropriate fine-grained mechanisms
only when needed after measuring an actual performance problem

* Events tend to be hard to debug since you can't see the chain of invocations
by looking at the code.

» As a result it's important to keep the event propagation mechanism as

simple as you can, which is why Fowler favours coarse-grained
mechanisms.

» A good rule of thumb is to think of your objects as layered and to only
allow observer relationships between layers.

» SO one domain object should not observe another domain object, only
presentation objects should observe domain objects.

15

Fine-grained Approach: PropertyChangeSupport

java.beans

Class PropertyChangeSupport

java.lang.Object
L—java.beans.PropertyChangeSupport

All Implemented Interfaces:
Serializable

Direct Known Subclasses:
‘SwingPropertyChangeSupport

public class PropertyChangeSupport
extends Object
implements Serializable

This is a utility class that can be used by beans that support bound properties. You can use an instance of
this class as a member field of your bean and delegate various work to it. This class is serializable. When
it is serialized it will save (and restore) any listeners that are themselves serializable. Any non-serializable
listeners will be skipped during serialization.

See Also:
Serialized Form

16

PropertyChangekvent

java.beans

Class PropertyChangeEvent

java.lang.Object
L java.util.EventObiject
L—java.beans.PropertyChangeEvent

All Implemented Interfaces:
Serializable

public class PropertyChangeEvent
extends EventObject

A "PropertyChange" event gets delivered whenever a bean changes a "bound" or "constrained" property. A
PropertyChangeEvent object is sent as an argument to the PropertyChangeListener and VetoableChangeListener methods.

Normally PropertyChangeEvents are accompanied by the name and the old and new value of the changed property. If the
new value is a primitive type (such as int or boolean) it must be wrapped as the corresponding java.lang.* Object type (such
as Integer or Boolean).

Null values may be provided for the old and the new values if their true values are not known.

An event source may send a null object as the name to indicate that an arbitrary set of if its properties have changed. In this
case the old and new values should also be null.

17

fire

PropertyChange

firePropertyChange

public void firePropertyChange(PropertyChangeEvent evt)

Fire an existing PropertyChangeEvent to any registered listeners. No event is fired if the given event's old and new
values are equal and non-null.

Parameters:
evt - The PropertyChangeEvent object.

Constructor Summary

PropertyChangeEvent (Object source, String propertyName, Object oldValue, Obiject newValue)
Constructs a new PropertyChangeEvent.

18

OIS

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

%/l Waterford Institute of Technology o eLearning

o, INSTITIOID TECNEOLAIOCHTA PHORT LARCE SUppor t unit

"

