
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Communications Software

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Singleton

Design Pattern

Intent

• A class with a constrained number of instances (typically one). The instance is
globally accessible

• Singleton: The object being created, defines a class-level (static) get-instance
method that returns the instance. The class-level get-instance method may
create the object if necessary.

�3

What Problem Does It Solve?

• Programs often have a need for single-instance objects.

• Objects, for example, might represent a single database, a single company,
and so forth.

�4

Advantages

• Better than a global object in that access is controlled and the global name
space isn’t cluttered with hard-to-find objects. 

• Guarantees that the object is created (and destroyed) only once—essential
when the Singleton manages a global resource such as a database
connection.

�5

Disadvantages

• A Singleton called Globals that contains nothing but public variables can
cause extreme difficulties

• Global namespace ‘polluted’ and difficult to trace impact of changes

• A singleton containing global constants is reasonable if the values of the
constants need to be initialized at run time.

• If the values are known at compile time, use an interface made up solely of
static final fields and implement the interface when you need to use the
constants.

�6

Implementation Variations (1)

• Create single static instance in initializer

• Static ‘instance’ method to retrieve singleton

�7

class Singleton	
{	
 private static final Singleton instance = new Singleton();	
!
 public static Singleton instance()	
 {	
 return instance;	
 }	
}	

Example Implementation

�8

class FileLogger	
{	
 private static FileLogger logger;	
!
 // Prevent clients from using the constructor	
 private FileLogger()	
 {	
 }	
!
 // Control the accessible (allowed) instances	
 public static FileLogger getFileLogger()	
 {	
!
 if (logger == null)	
 {	
 logger = new FileLogger();	
 }	
 return logger;	
 }	
!
 public synchronized void log(String msg)	
 {	
 // Write to log file...	
 }	
}

Implementation Variations (2)

• No non-static members

• All fields and members static

�9

class Singleton	
{	
 static int all_fields;	
!
 static void all_operations()	
 {	
!
 }	
}

Implementation Variations (3) (holub)

• In a multi-threaded environment,
more than one singleton may be
created

• Mark instance method as
‘synchronized’ to prevent this.

�10

class Singleton	
{	
 private static Singleton1 instance;	
!
 private Singleton1()	
 { 	
 Runtime.getRuntime().addShutdownHook (
 new Thread()	
 { 	
 public void run()	
 {	
 /* clean-up code here */ 	
 }	
 });	
 }	
 	
 public static synchronized Singleton instance()	
 {	
 if (instance == null) 	
 instance = new Singleton();	
 return instance; 	
 }	
}

JDK Examples

�11

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

