Mobile Application Development

Higher Diploma in Science in Computer Science

Eamonn de Leastar (edeleastar@wit.ie)

Department of Computing, Maths & Physics
Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Waterford Institute of Technology 0 elLearning

cﬁl\ 75 WSTITIOID TECNEOLAIOCHTA PHORT LAIRGE support unit

i i

mailto:edleastar@wit.ie

Catalogues

Holub

HOluD on

Patterns

Learning Design Patterns by Looking at Code

Learn design patterns by seeing them used in real programs.

Allen Holub

Copyrighted Material Apl‘eSSO

Strategy

Define an interface that defines a strategy for performing some operation. A family of interchangeable classes,
one for each algorithm, implements the interface.

Stalegy

<<minterlacer >

Sockel pool

ool

Context

Fratocol _handler

+allocatel host : Stang. port : int | Socket

+releasel s socket |

7

Concrele Strategy |

+process(host - Strinag, port - int)

Concrete Shalegy

SimplePool

Keepalve pool

+allocate| host : Sthng, port - int). Socket
+eleasel s - Socket)

+allocate| host Stong, port - int] Socket

+elease| s - Socket |

Strategy: an interface that allows
access to an algorighm.
Concrete Strategy: Implements a
particular algorithm to conform
to the Strategy interface.
Context. Uses the algorithm
through the Strategy interface.

What Problem Does It Solve? See Also

Sometimes, the only difference between subclasses is Command
the strategy that’s used to perform some common
operation. For example, a frame-window might lay out
its components in various ways, or a protocol handler
might manage sockets in various ways. You can solve
this problem with derivation—several Frame
derivatives would each lay out subcomponents in
different ways, for example. This derivation-based
solution creates a proliferation of classes, however. In
Strategy, you define an interface that encapsulates the
strategy for performing some operation (like layout).
Rather than deriving classes, you pass the “Context”
class the strategy it uses to perform that operation.

Pros (V) and Cons (%)

v’ Strategy is a good alternative to subclassing. Rather
than deriving a class and overriding a method called
from the base class, you implement a simple interface.
v’ The strategy object concentrates algorithm-specific
data that’s not needed by the “Context” class in a class
of its own.

v It’s very easy to add new strategies to a system,
with no need to recompile existing classes.

X There’s a small communication overhead. Some of
the arguments passed to the strategy objects might not
be used.

Often Confused With

Command objects are very generic. The invoker of the
command doesn’t have a clue what the command
object does. A Strategy object performs a specific
action.

Implementation Notes and Example

interface Socket pool

{ Socket allocate(String host, int port)
void release (Socket s)

}

class Simple pool implements Socket pool

{ public Socket allocate(String host,int port)
{ return new Socket(host, port);
}
public void release(Socket s)
{ s.close();
}

};

class Keepalive pool implements Socket pool
{ private Map connections = new HashMap();
public Socket allocate(String host,int port)
{ Socket connection =
(Socket)connections.get(host+":
if(connection == null)
connection = new Socket(host,port);
return connection;
}
public void release(Socket s)
{ String host =
s.getInetAddress().getHostName();
connections.put(host+":"+s.getPort(),s);

}
/...

}
class Protocol handler
{ Socket_pool pool = new Simple pool();
public void process(String host, int port)
{ Socket in = pool. allocate(host,port),
/...
pool.release(in);

+port);

public void set pooling strategy(Socket pool p)

{ pool = p;
}

The code at left implements a skeleton protocol
handler. Some of the hosts that the handler talks to
require that sockets used for communication are closed
after every message is processed. Other hosts require
that the same socket be used repeatedly. Other hosts
might have other requirements. Because these
requirements are hard to predict, the handler is passed
a socket-pooling strategy.

The default strategy (Simple pool) simply opens
a socket when asked and closes the socket when the
Protocol handler releases it.

The Keepalive pool implements a different
management strategy. If a socket has never been
requested, this second strategy object creates it. When
this new socket is released, instead of closing it, the
strategy object stores it in a Map keyed by combined
host name and port number. The next time a socket is
requested with the same port name and host, the
previously created socket is used. A more realistic
example of this second strategy would probably
implement notions like “aging,” where a socket would
be closed if it hadn’t been used within a certain time
frame.

In the interest of clarity, I’ve left out the
exception handling.

JFrame frame = new JFrame(); The LayoutManger (FlowLayout) defines a
frame.getContentPane().setlLayout y g J -
‘8 '(ew);:lowLayou £); strategy for laying out the components in a
) . 13 ”\.
frame.add(new JLabel("Hello World"); container (JFrame, the “Context”);
String[] array = new String[]{ ... }; The Arrays.sort(...) method is passed an
l(xrraa);sr . §I°rt array to sort and a Comparator that defines a
new Cc’Jmparator strategy for comparing two array elements.
{ int Compare(Object o1, Object o2) This use of Strategy makes sort(...)
{ return ((String)o1).compareTo((String)o2); completely generic—it can sort arrays of
} } anything..
)

Template Method

Define an algorithm at the base-class level. Within the algorithm, call an abstract method to perform operations
that can’t be generalized in the base class. This way you can change the behavior of an algorithm without
changing its structure.

Abstract Class Abstract Class: Defines an algorithm
that uses “primitive” operations that are
supplied by a derived class.

t+allocale(host : String. port : int) : Socket Concrete Class: Implements the
+process(host : String. port @ int) “primitive” operations.

+release(s: Socket):

Protocol_handler2

Concrete Class T‘

Keepalive Protocol _handler

t+allocale(host : String. port : int) : Socket
+release(s : Socket)

What Problem Does It Solve? v" One reasonable application of Template
Template method is typically used in derivation-based Method is to provide empty “hooks™ at the base-class
application frameworks. The framework provides a set 16Vel .50161}’ . that a programmer can insert

of base classes that do 90% of the work, deferring functionality into the base class via derivation.

application-specific operations to abstract methods. Often Confused With

You use the framework by deriving classes that Factory Method 1s nothing but a Template Method that
implement this application-specific behavior. creates objects.

Pros (v) and Cons (%) See Also

X Template method has little to recommend it in most Factory Method.
situations. Strategy, for example, typically provides a
better alternative. Well done class libraries work “out
of the box.” You should be able to instantiate a
framework class and it should do something useful.
Generally, the 90/10 rule applies (10% of the
functionality is used 90% of the time, so that 10%
should be define the default behavior of the class). In
template method, however, the framework defines no
default behavior, but rather, you are required to
provided derived classes for the base class to do
anything useful. Given the 90/10 rule, this means that
you have to do unnecessary work 90% of the time.

Template method does not prohibit the class
designer from providing useful default functionality,
expecting that the programmer will modify the
behavior of the base class through derived-class
overrides. In an OO system, though, using derivation
to modify base-class behavior is just run-of-the-mill
programming, hardly worth glorifying as an official
pattern.

Implementation Notes and Example This example is the example from Strategy rewritten to
sue Template Method. Rather than provide a strategy

?1;3;1220';23&{“:22‘1)3:8 (string host,int port) object, you derive a class that modifies the base-class
{ return new Socket(host, port); ’ behavior. Put differntly, you modify the behavior of the
} protocol-processing algorithm with respect to socket
public void release(Socket s) management.

{ s.close();

public void process(String host, int port)
{ Socket in =
socket pool.allocate(host,port);
/...
socket pool.release(in);

}
}

class Keepalive Protocol handler

{

private Map connections = new HashMap();

public Socket allocate(String host,int port)
{ Socket connection =
(Socket)connections.get(host+":"+port);
if(connection == null)
connection = new Socket(host,port);
return connection;
}
public void release(Socket s)
{ String host=
s.getInetAddress().getHostName();
connections.put(host+":"+s.getPort(),s);

}
}

Usage

class my Panel extens JPanel
{ public void paint(Graphics g)
{ g.drawString("Hello World", 10, 10);

Define painting behavior by overriding the paint(...)
method. You could easily do the same thing by passing
a Panel a “paint” strategy.

Command

Encapsulate a request or unit of work into an object. Command provides a more capable alternative to a
function pointer because the object can hold state information, can be queued or logged, and so forth.

Invoker Command: Defines an

- “ommand interface for executing an
extEditor) . . .
-undo_stack | <<interface>> operation or set of operations.
+delete_character(c : char) 0. | Action C te C. d:
+insert_character(c : char) ' oncreie Lommana.
-process(command : Action) -redo_stack | +do_it() Implements the Command
+redo|) 0.+ |*undo_it) interface to perform the
fundoy o 5 operation. Typically acts as an
: | intermediary to a Receiver
Receiver Y -curment NIOH AN | object.
— -nserted : char | Invoker: Asks the command to
T where o 10 | carry out a request.
' +undo_it() | Receiver: Knows how to carry
*charcter_at() : char . out the request. This
+clone() : Object Concmt e functionality is often built in
+delete_character_at() : void Command deleted - char))
T ErTR— | to the Command object itself.
+move_to(here : Cursor) : void where +do_it()
+undo_it()

What Problem Does It Solve?

You can’t have a function pointer in an OO system
simply because you have no functions, only objects
and messages. Instead of passing a pointer to a
function that does work, pass a reference to an object
that knows how to do that work.

A Command object is effectively a transaction
encapsulated in an object. Command objects can be
stored for later execution, can be stored as-is to have a
transaction record, can be sent to other objects for
execution, etc.

Command is useful for things like “undo”
operations. It’s not possible to undo an operation
simply by rolling the program back to a previous state,
because the program might have had an effect on the
outside world while transitioning from the earlier state
to the current one. Command gives you a mechanism
for actively rolling back state by actively reversing
side effects like database updates.

By encapsulating the work in an object, you can
also define several methods, and even state information,
that work in concert to do the work. For example, a
single object can encapsulate both “undo” and “redo”
operations and the state information necessary to
perform these operations.

Command also nicely solves “callback™ problems
in multithreads systems. A “client” thread creates a

commend object that performs some operation, then
notifies that client when the operation completes. The
client then gives the Command object to a second thread
on which the operation is actually performed.

Pros (V') and Cons (%)

v' Command decouples operations from the object that
actually performs the operation.

Often Confused With

Strategy. The invoker of a Command doesn’t know what
the Command object will do. A Strategy object
encapsulates a method for doing a specific task for the
invoker.

See Also
Memento, Strategy

Implementation Notes and Example

abstract class Cursor extends Cloneable

{

public Object clone();
public char character at();
public void delete character at();
public void insert character at(
char new_character);
public void move to(Cursor new position);
public void move_right();
/...

class Text_Editor

{

private Cursor current=Cursor.instance();
private LinkedList undo stack =

new LinkedList();
private LinkedlList redo stack =

new LinkedList();
public void insert character(char c)
{ process(new Inserter(c));

public void delete character()
{ process(new Deleter());

private void process(Action command)
{ command.do it();
undo_stack.addFirst(command);

public void undo()
{ Action action =
(Action) undo_stack.removeFirst();
action.undo_it();
redo_stack.addFirst(action);

public void redo()
{ Action action =
(Action) redo stack.removeFirst();
action.do it();
undo_stack.addFirst(action);
}
private interface Action
{ void do_it();
void undo_it();

private class Inserter implements Action
{ Cursor where = (Cursor) current.clone();
char inserted;

public Insert action(char new_character)
{ inserted = new character;

}
public void do it()
{ current.move to(where);
current.
insert character at(inserted);
current.move right();

public void undo it()
{ current.move to(where);
current.delete character at();
}
}

private class Deleter implements Action

{

Cursor where = (Cursor) current.clone();
char deleted;
public void do_it()
{ current.move to(where);
deleted = current.character at();
current.delete character at();

public void undo_it()
{ current.move to(where);
current.
insert character at(deleted);
current.move right();

}
}
/...
}

Most of the work is done by the Cursor, which reifies
Iterator (see). The Text editor is driven by a Client
class (not shown) that interprets user input and tells
the editor to do things like insert or delete characters.
The Text_Editor performs these request by creating
Command objects that implement the Action
interface. Each Action can both do something and also
undo whatever it did. The editor tells the Action to do
whatever it does, and then stacks the object. When
asked to undo something, the editor pops the Action
off the undo stack, asks it to undo whatever it did, and
then puts it on a redo stack.. Redo works in the a
similar way, but in reverse.

new Thread()
{ public void run(){ /*...*/ }
}.start();

Thread is passed a Runnable Command object
that defines what to do on the thread.

java.util.Timer t = new java.util.Timer();
t.schedule(new java.util.TimerTask()
{ public void run()
{System.out.println(Ohello world();}
}, 1000);

Print “hello world.” one second from now. The
TimerTask is a Command object. Several
TimerTask objects may be queued for future
execution.

Prototype

Create objects by making copies of (“cloning™) a prototypical object. The prototype is usually provided by an
external entity or a Factory, and the exact type of the prototype (as compared to the interfaces it implements)
may not be known.

Prototype: Interface
of object to copy,
Prototype Client must define a
Object I <<abstiact>> User mechanism for
ficlone() - Object Handle protolype <> : cloning itself.
i uses copias of +Client prototype : Handler] oo C Pr .
- +clone() : Object _ — — — —ftsome_method(] © N on.crete OtOtyp.e‘
<lagging interface>> La | onerationf) —~ / (Object that’s copied,
Lioneable / implements cloning
new handler = pratotype clone(); Ve mechanism
' . .
HT TPhandler FTPhandler / Chent Creat?s anew
‘ object by asking the
+clone() . Object sclonel) . Obect this prototype=protolype Pl’OtOty'pe fOI' a Clone.
+operation() +operation|)

Concrete Prololype

What Problem Does It Solve?

(1) In Abstract Factory, information needed to
initialize the Concrete Product (constructor arguments,
for example) must be known at compile time. Most
Abstract Factory reifications use the default, “no-arg,”
constructor. When you use Abstract Factory to make
objects that must be in a non-default state, you must
first create the object, then modify it externally, and
this external modification may happen in many places
in the code. It would be better to create objects with
the desired initial (non-default) state and simply copy
those objects to make additional ones. You might use
Abstract Factory to make the prototype object.

(2) Sometimes. objects will be in only a few possible
states, but you have many objects in each state. (The
GoF describe a Note class in a music-composition
system; there are many instances of whole-note, half-
note, and quarter-note objects—but there all whole
notes are in an identical state.

(3) Sometimes classes are specified at runtime and are
created with “dynamic loading” [e.g.
Class.forname("class.name")] or a similarly
expensive process (when initial state is specified in an
XML file, for example). Rather than repeatedly going
through the expense of creating an object, create a
single prototype and copy it multiple times.

Pros (v) and

Cons (%)
v You can install a new concrete product into a
Factory simply by giving it a prototype at run time.
Removal is also easy.
v' Prototype can reduce object-creation time.
v" Abstract factory forces you to define classes with
marginally different behavior using subclassing.
Prototype avoids this problem by using state. When an
object’s behavior changes radically with state, you can
look at the object as a dynamically specifiable class,
and Prototype is your instantiation mechanism.
% You must explicitly implement clone(), which can
be quite difficult. Worry about the memory-allocation
issues discussed below. Also think about deep-vs.-
shallow copy issues (should you copy a reference, or
should you clone the referenced object?). Finally,
sometimes the clone method should act like a
constructor and initialize some fields to default values.
A clone of a list member cannot typically be in the list,
for example.

See Also
Abstract Factory, State

Implementation Notes and Example In this example, we need to create many copies of a

abstract class Handler implements Cloneable Handler d.eriviti\'fe for a.particulgr protocol. The _
{ // Derived classes of Handler must be placed prototcol 1s specified using a string, and the Handler 1s
// in the com.holub.tools.handlers package, created dynamically using Class.forname().

// and must have the name ProtocolHandler, : - :
// where Protocol is the handled protocol. Prototype is used to avoid the overhead of multiple
calls to Class.forname().

public Object clone() You cannot use new to implement a “clone” method.

{ Handler copy = .
. The following code won’t work:
(Handler)(super.clone()); Class Grandparent

;étagztzzé;fe fields of copy here... { public Grandparent(Object args){/*...*/}
b J

} Base my clone(){ return new Base(args);}
\ abstract public operation(); Class Parent
{ public Parent(){ super("arg");}
class User Derived my_clone(){return new Parent(args)}
{ private Handler prototype; } .
public User(Handler prot:)type) Class Child
{ this.prototype = prototype; { public Cblld(){ super(); }
} /* inherit the base-class my clone */
public some method() }/
Handl handler=prototype.cl ; sl
t /3r:uer new_handler=prototype. clone(); Grandparent g = new Child();
/...
} } g.my clone(); // Returns a Parent, not Child!
Using Java’s clone() solves this problem by getting
class User_of_User memory from super.clone(), but clone() is
i vate U lient: ry P ’
{ Eﬂi\faiceuiiro?yaﬁeifg tring protocol) protected for some reason, so can’t be used directly
{ StringBuffer name = new StringBuffer in Prototype. Expose clone() with a public pass-
("com.holub.tools.handlers"); through method [create()];

name.append(protocol);

name.append("Handler");

my client = new Client(
Class.forname(name.toString()));

Waterford Institute of Technology

.o INSTITIOID TECNEOLAIOCHTA PHORT LAIRGE

H©

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

i

elLearning
support unit

