
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Communications Software

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Design Patterns Selection

Identifying, Selecting and Using Design Patterns

Agenda

• Designing for Change

• Identifying Variability

• Using a Pattern

�3

Design for Change

• The key to maintaining an agile application is to design a system that can
evolve as requirements evolve.

‣ Otherwise it risks major redesign costs in the future.

• Redesign might involve

‣ class redefinition and re-implementation

‣ client modification

‣ retesting

• i.e. the “opening” of “closed” modules (Open Closed Principle)

• Design patterns help avoid this by ensuring that a system can change in

specific ways.

‣ Each design pattern lets some aspect of system structure vary

independently of other aspects

‣ Making a system more robust to a particular kind of change.

�4

Common Causes of Redesign

1.Creating an object by specifying a class explicitly

2.Dependence on specific request/operation fulfillment mechanisms

3.Dependence on hardware and software platform

4.Dependence on object representations or implementations

5.Algorithmic dependencies

6.Tight coupling

7.Extending functionality by implementation inheritance

8.Inability to alter classes conveniently

�5

(1) Creating an object by specifying a class explicitly

• Specifying a class name when creating an object commits code to a
particular implementation (class) instead of a particular type (interface)

• This commitment can complicate future changes.

• To avoid it, create objects indirectly.

�6

Abstract Factory
Factory Method

Prototype

(2) Dependence on specific request/operation
fulfillment mechanisms

• When specifying a particular operation (particular user originated) the design
can commit to one way of satisfying a request.

• By avoiding hard-coded operations the design can make it easier to change
the way a request is fulfilled

�7

Chain of Responsibility
Command

(3) Dependence on hardware and software platform

• External operating system interfaces and application programming interfaces
(APIs) are different on different hardware and software platforms.

• Software that depends on a particular platform will be harder to port to other
platforms.

• It may even be difficult to keep it up to date on its native platform.

• Design system to limit its platform dependencies.

�8

Abstract Factory
Bridge

(4) Dependence on object representations or
implementations

• Clients that know how an object is represented, stored, located or
implemented might need to be changed when the object changes.

• Hiding this information from clients keeps changes from cascading.

�9

Abstract Factory
Bridge

Memento
Proxy

(5) Algorithmic dependencies

• Algorithms are often extended, optimized, and replaced during development
and reuse.

• Objects that depend on an algorithm will have to change when the algorithm
changes.

• Therefore algorithms that are likely to change should be isolated.

�10

Builder
Iterator

Strategy
Template Method

Visitor

(6) Tight coupling

• Tightly coupled classes are hard to reuse in isolation,
since they depend on each other.

‣ Produces monolithic systems whereby classes
cannot be changed or removed without
understanding and changing many other classes.

‣ The system becomes a dense mass that's hard to
learn, port, and maintain.

• Loose coupling increases the probability a class can be
reused

‣ Produces a system can be learned, ported,
modified, and extended more easily.

�11

Abstract Factory
Bridge

Chain of Responsibility
Command

Facade
Mediator
Observer

(7) Extending functionality by subclassing

• Complexities with implementation inheritance:

‣ Implementation overhead (initialization, finalization,

etc.).

‣ In-depth understanding of the parent class.

‣ Overriding one operation might require overriding

another.

‣ An overridden operation might be required to call an

inherited operation.

• Object composition & delegation provide flexible

alternatives:

‣ Functionality can be introduced by composing

existing objects in new ways

‣ Many patterns facilitate introduction of new

functionality just by implementing an interface &
composing its instances with existing objects.

�12

Bridge
Chain of Responsibility

Composite
Decorator
Observer
Strategy

(8) Inability to alter classes

• Sometimes a class requires modification, but:

‣ Source code is unavailable

‣ Change would require modifying many existing
subclasses.

• Design patterns offer ways to modify behaviour of such
classes in some circumstances.

�13

Adapter
Decorator

Visitor

Identifying Variability

• Consider carefully what should be variable in the design

• Instead of considering

‣ what might force a change to a design

• consider

‣ what you want to be able to change without redesign.

• The focus is on encapsulating the concept that varies, a theme of many
design patterns.

�14

�15

�16

�17

Patterns Not a Panacea

• Design patterns should not be applied indiscriminately.

• Often they achieve flexibility and variability by introducing additional levels of
indirection

‣ Complicating a design

‣ Degrading performance.

• A design pattern should only be applied when the flexibility it affords is
actually needed.

�18

Summary Guidelines (1)

• Read the pattern documentation through for an overview.

‣ Particularly Applicability and Consequences sections (if available)

• Study the Structure, Participants, and Collaborations sections.

‣ Be sure to understand the classes and objects in the pattern and how they
relate to one another.

• Study the sample code carefully

• Choose names for pattern participants that are meaningful in the application
context:

‣ The names for participants in the patterns may be too abstract to appear
directly in an application. Nevertheless, it may be useful to incorporate the
participant name into the name that appears in the application.

�19

Summary Guidelines (2)

• Define the classes:

‣ Declare their interfaces, establish their inheritance relationships, and define
the instance variables that represent data and object references.

‣ Identify existing classes in the application that the pattern will affect, and
modify them accordingly.

• Define application-specific names for operations in the pattern.

‣ Again the names generally depend on the application. Use the
responsibilities and collaborations associated with each operation as a
guide.

• Implement the operations to carry out the responsibilities and collaborations
in the pattern.

• The Implementation section in the pattern documentation may offer hints
to guide the implementation.

�20

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

