Design Patterns

MSc in Communications Software

Eamonn de Leastar (edeleastar@wit.ie)

Department of Computing, Maths & Physics
Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Waterford Institute of Technology o elLearning

cr‘\ o7} INSTITIOID THCNEOLAIOCHTA PHORT LARGE su pport unit

-.V-'_—-a;

mailto:edleastar@wit.ie

Design Patterns Categories

The Organisation of Pattern Catalogues

Organising a Catalogue

- Design patterns vary in their granularity and level of abstraction.
 Patterns can be classified into related families

» This classification can helps in learning the patterns & can direct efforts to
find new patterns

GoF Categorisation

Purpose
Creational Structural Behavioral
Factory Method Adapter Interpreter
Template Method
Chain of Responsibility
Adapter Command
Abstract Factory Bridge lterator
Builder Composite Mediator
Prototype Decorator Memento
Singleton Facade Flyweight
Proxy Observer
State
Strategy

Visitor

Categorisation Criteria

Purpose - reflects pattern’s intent:
» Creational: the process of object creation
» Structural: the composition of classes or objects
» Behavioural: ways classes/objects interact and distribute responsibility

Scope - whether pattern applies primarily to classes or objects:

» Class: deal with relationships between classes and their subclasses. These
relationships are established through inheritance

» Object: deal with object relationships, which can be changed at run-time
and are more dynamic.

Almost all patterns use inheritance to some extent- class patterns are those
that focus on class relationships.

Most patterns are in the Object scope (reflecting the favouring of composition
over inheritance)

——» Memento Proxy
saving state
Builder of iteration Adapter
Patt lationshi \ N
avoiding .
attern Relationships . =
composites \
enumerating
childran
ackding composed
msporm‘.'w,arr‘esf\ / using Command
to objects
/,_ Composite
Decorator sharing \ A N
3 campasries adding ?emmng , definirng
d fraversals =
‘ operations l the cham
. deﬂnn’ng \— ..
Flyweight arammer Visitor
chanhging skin
Versus gb'!S
adding
sharing Interpreter |————— Opéralions Chain of Responsibility
strategies
(shanng J
termina!
Strategy sharing symbols Vediat
stalas eglator
T~ comgex
depencency
management Observer
defining State
atgovithm's
Slaps \—¥
Template Method |———— Offén uses
Prototype ‘\
= Factory Meth
configure faciory wetory Methad
dynarnicaly implemant using
1 Abstract Factory
single
nstance

/

Singleton

/ fl’n‘s ?ame

single — |

Facade

Creational Patterns (1)

- Creational design patterns abstract the instantiation process

» System becomes independent of how its objects are created, composed,
& represented.

» A class creational pattern uses inheritance to vary the class that's
iInstantiated

» A object creational pattern will delegate instantiation to another object.

- Creational patterns important as systems evolve to depend more on object
composition than implementation inheritance

» Emphasis shifts away from hard-coding a fixed set of behaviours toward
defining a smaller set of fundamental behaviours that can be composed
iInto any number of more complex ones.

» Thus creating objects with particular behaviours requires more than simply
Instantiating a class

Creational Patterns (2)

« Two recurring themes:
» encapsulate knowledge about which concrete classes the system uses.
» hide how instances of these classes are created and put together.
- Creational patterns provide flexibility:
» in what gets created
» who creates it
» how It gets created
» and when

+ A system can be configured with objects that vary widely in structure and
functionality.

- Configuration can be static (that is, specified at compile-time) or dynamic (at
run-time).

Structural Patterns

- Concerned with how classes and objects are composed to form larger
structures

» Class patterns use inheritance to compose interfaces or implementations

» Object patterns describe ways to compose objects to realize new
functionality.

- The added flexibility of object composition comes from the ability to change
the composition at run-time, which is impossible with static class
composition.

SBehavioural Patterns

- Concerned with algorithms and the assignment of responsibilities between
objects.

- Describe not just patterns of objects or classes but also the patterns of
communication between them.

» They characterize complex control flow that may be difficult to follow at run-
time.

- Shift focus away from flow of control to permit concentration on the way
objects are interconnected

10

The GoF Patterns (1)

Abstract Factory
» Provide an interface for creating families of related or dependent objects without
specifying their concrete classes.
Adapter
» Convert the interface of a class into another interface clients expect. Adapter lets
classes work together that couldn't otherwise because of incompatible interfaces.
Bridge
» Decouple an abstraction from its implementation so that the two can vary
independently.
Builder
» Separate the construction of a complex object from its representation so that the same
construction process can create different representations.
Chain of Responsibility
» Avoid coupling the sender of a request to its receiver by giving more than one object a
chance to handle the request. Chain the receiving objects and pass the request along
the chain until an object handles it.
Command
» Encapsulate a request as an object, thereby letting you parameterize clients with
different requests, queue or log requests, and support undoable operations.

11

The GoF Patterns (2)

Composite

» Compose objects into tree structures to represent part-whole hierarchies. Composite
lets clients treat individual objects and compositions of objects uniformly.

Decorator

» Attach additional responsibilities to an object dynamically. Decorators provide a flexible
alternative to inheritance for extending functionality.

Facade

» Provide a unified interface to a set of interfaces in a subsystem. Facade defines a
higher-level interface that makes the subsystem easier to use.

Factory Method

» Define an interface for creating an object, but let subclasses decide which class to
instantiate. Factory Method lets a class defer instantiation to subclasses.

Flyweight
» Use sharing to support large numbers of fine-grained objects efficiently.
Interpreter

» Given a language, define a representation for its grammar along with an interpreter that
uses the representation to interpret sentences in the lanauaae.

12

The GoF Patterns (3)

Iterator
» Provide a way to access the elements of an aggregate object sequentially without
exposing its underlying representation.
Mediator
» Define an object that encapsulates how a set of objects interact. Mediator promotes
loose coupling by keeping objects from referring to each other explicitly, and it lets you
vary their interaction independently.
Memento
» Without violating encapsulation, capture and externalize an object's internal state so
that the object can be restored to this state later.
Observer
» Define a one-to-many dependency between objects so that when one object changes
state, all its dependents are notified and updated automatically.
Prototype
» Specify the kinds of objects to create using a prototypical instance, and create new
objects by copying this prototype.
Proxy
» Provide a surrogate or placeholder for another object to control access to it.

13

The GoF Patterns (4)

Singleton
» Ensure a class only has one instance, and provide a global point of access to it.
State

» Allow an object to alter its behaviour when its internal state changes. The object will
appear to change its class.

Strategy
» Define a family of algorithms, encapsulate each one, and make them interchangeable.
Strategy lets the algorithm vary independently from clients that use it.
Template Method

» Define the skeleton of an algorithm in an operation, deferring some steps to subclasses.
Template Method lets subclasses redefine certain steps of an algorithm without
changing the algorithm's structure.

Visitor

» Represent an operation to be performed on the elements of an object structure. Visitor
lets you define a new operation without changing the classes of the elements on which it
operates.

14

OIS

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

%/l Waterford Institute of Technology o eLearning

o, INSTITIOID TECNEOLAIOCHTA PHORT LARCE SUppor t unit

"

