
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Communications Software

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Design Patterns Categories

The Organisation of Pattern Catalogues

Organising a Catalogue

• Design patterns vary in their granularity and level of abstraction.

• Patterns can be classified into related families

• This classification can helps in learning the patterns & can direct efforts to
find new patterns

�3

GoF Categorisation

�4

Categorisation Criteria

• Purpose - reflects pattern’s intent:

‣ Creational: 	 the process of object creation

‣ Structural: 	 the composition of classes or objects

‣ Behavioural: 	 ways classes/objects interact and distribute responsibility

• Scope - whether pattern applies primarily to classes or objects:

‣ Class: deal with relationships between classes and their subclasses. These

relationships are established through inheritance

‣ Object: deal with object relationships, which can be changed at run-time

and are more dynamic.

• Almost all patterns use inheritance to some extent- class patterns are those

that focus on class relationships.

• Most patterns are in the Object scope (reflecting the favouring of composition

over inheritance)

�5

Pattern Relationships

�6

Creational Patterns (1)

• Creational design patterns abstract the instantiation process

‣ System becomes independent of how its objects are created, composed,
& represented.

‣ A class creational pattern uses inheritance to vary the class that's
instantiated

‣ A object creational pattern will delegate instantiation to another object.

• Creational patterns important as systems evolve to depend more on object
composition than implementation inheritance

‣ Emphasis shifts away from hard-coding a fixed set of behaviours toward
defining a smaller set of fundamental behaviours that can be composed
into any number of more complex ones.

‣ Thus creating objects with particular behaviours requires more than simply
instantiating a class

�7

Creational Patterns (2)

• Two recurring themes:

‣ encapsulate knowledge about which concrete classes the system uses.

‣ hide how instances of these classes are created and put together.

• Creational patterns provide flexibility:

‣ in what gets created

‣ who creates it

‣ how it gets created

‣ and when

• A system can be configured with objects that vary widely in structure and
functionality.

• Configuration can be static (that is, specified at compile-time) or dynamic (at
run-time).

�8

Structural Patterns

• Concerned with how classes and objects are composed to form larger
structures

‣ Class patterns use inheritance to compose interfaces or implementations

‣ Object patterns describe ways to compose objects to realize new
functionality.

• The added flexibility of object composition comes from the ability to change
the composition at run-time, which is impossible with static class
composition.

�9

Behavioural Patterns

• Concerned with algorithms and the assignment of responsibilities between
objects.

• Describe not just patterns of objects or classes but also the patterns of
communication between them.

• They characterize complex control flow that may be difficult to follow at run-
time.

• Shift focus away from flow of control to permit concentration on the way
objects are interconnected

�10

The GoF Patterns (1)

Abstract Factory

‣ Provide an interface for creating families of related or dependent objects without

specifying their concrete classes.

Adapter

‣ Convert the interface of a class into another interface clients expect. Adapter lets

classes work together that couldn't otherwise because of incompatible interfaces.

Bridge

‣ Decouple an abstraction from its implementation so that the two can vary

independently.

Builder

‣ Separate the construction of a complex object from its representation so that the same

construction process can create different representations.

Chain of Responsibility

‣ Avoid coupling the sender of a request to its receiver by giving more than one object a

chance to handle the request. Chain the receiving objects and pass the request along
the chain until an object handles it.

Command

‣ Encapsulate a request as an object, thereby letting you parameterize clients with

different requests, queue or log requests, and support undoable operations.

�11

The GoF Patterns (2)

Composite

‣ Compose objects into tree structures to represent part-whole hierarchies. Composite

lets clients treat individual objects and compositions of objects uniformly.

Decorator

‣ Attach additional responsibilities to an object dynamically. Decorators provide a flexible

alternative to inheritance for extending functionality.

Facade

‣ Provide a unified interface to a set of interfaces in a subsystem. Facade defines a

higher-level interface that makes the subsystem easier to use.

Factory Method

‣ Define an interface for creating an object, but let subclasses decide which class to

instantiate. Factory Method lets a class defer instantiation to subclasses.

Flyweight

‣ Use sharing to support large numbers of fine-grained objects efficiently.

Interpreter

‣ Given a language, define a representation for its grammar along with an interpreter that

uses the representation to interpret sentences in the language.

�12

The GoF Patterns (3)

Iterator

‣ Provide a way to access the elements of an aggregate object sequentially without

exposing its underlying representation.

Mediator

‣ Define an object that encapsulates how a set of objects interact. Mediator promotes

loose coupling by keeping objects from referring to each other explicitly, and it lets you
vary their interaction independently.

Memento

‣ Without violating encapsulation, capture and externalize an object's internal state so

that the object can be restored to this state later.

Observer

‣ Define a one-to-many dependency between objects so that when one object changes

state, all its dependents are notified and updated automatically.

Prototype

‣ Specify the kinds of objects to create using a prototypical instance, and create new

objects by copying this prototype.

Proxy

‣ Provide a surrogate or placeholder for another object to control access to it.

�13

The GoF Patterns (4)

Singleton
‣ Ensure a class only has one instance, and provide a global point of access to it.

State

‣ Allow an object to alter its behaviour when its internal state changes. The object will

appear to change its class.

Strategy

‣ Define a family of algorithms, encapsulate each one, and make them interchangeable.

Strategy lets the algorithm vary independently from clients that use it.

Template Method

‣ Define the skeleton of an algorithm in an operation, deferring some steps to subclasses.

Template Method lets subclasses redefine certain steps of an algorithm without
changing the algorithm's structure.

Visitor

‣ Represent an operation to be performed on the elements of an object structure. Visitor

lets you define a new operation without changing the classes of the elements on which it
operates.

�14

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

!
For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

