
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Communications Software

Design Patterns

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Design Patterns Background

The Origins of Design Patterns

On Vocabulary

3

Janousek single scull

55-60kg

Croker blades

Carbon Honeycomb

J13 Heavyweight Mould

Rowfit wing rigger

Patterns
Vocabulary

• Hierarchical MVC UI Design

• Command pattern supporting multi-level undo/redo, incorporating Prototype
based command creation.

• Composite contact list organisation

• Visitor contact search facility

• Strategy report generators
4

5

Purpose of Design Pattern

1.Reuse

‣ Reuse elegant, proven and high quality designs across multiple contexts

2.Flexibility

‣ Introduce greater flexibility into the design

3.Documentation

‣ Improving the documentation and maintenance of existing system by
furnishing an explicit specification of class and object interactions and
their intent

6

Origins

• "Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever
doing it the same way twice."

Christopher Alexander, A Pattern Language: Towns/Buildings/Construction,
1977

• A object-oriented design pattern systematically names, explains and
evaluates an important and recurring design in object-oriented systems

7

Origins

8

Alexander & Patterns
• Alexander studied the problem of objective quality by making observations of

buildings, towns, streets, gardens, any spaces that human beings have built

‣ He reasoned that high quality constructs had things in common

‣ Architectural structures differed from each other even if they were of the

same type solving the same problem. Yet different solutions were of high
quality.

‣ He understood that structures could not be separated from the problem
they are solving

• He proposed that different structures yielded a high quality solution to similar
problems and extracted the similarity of the structures, the core of the
solution, which he calls a pattern:

‣ solutions to a problem in a context

‣ 253 patterns covering regions, towns, transportations, homes offices,

rooms, lighthing, gardens, ...

‣ each pattern defines subproblems solved by other smaller patterns

9

Patterns in Software Design

10

GoF

• The landmark book on software design
patterns is:

 Design Patterns: Elements of Reusable

 Object-Oriented Software

 Erich Gamma, Richard Helm,

 Ralph Johnson, John Vlissides

 Addison-Wesley, 1995

• This is also known as the GOF (“Gang-
of-Four”) book.

• Design Patterns help you break out of
first-generation (naive) OO thought
patterns

11

Regularly Appears in top-10 programming lists

12

Pattern Definition

• Each design pattern systematically:

‣ Names

‣ Explains

‣ Evaluates

an important and recurring design in object-oriented systems.

• Patterns capture this design experience in a form that can be effectively
communicated.

• Often presented as a catalogue.

13

To What End?

• Make it easier to reuse successful designs and architectures.

• Express proven techniques making them accessible to developers of new
systems.

• Help developers choose appropriate design alternatives that make a system
reusable and avoid options that compromise reusability.

• Improve the documentation and maintenance of existing systems by
furnishing an explicit specification of class and object interactions and their
underlying intent.

14

Design Pattern Characteristics

• Design patterns represent solutions to problems that arise when developing
software within a particular context

‣ Patterns = Problem/Solution pair in Context

• Capture static and dynamic structure and collaboration among key
participants in software designs

‣ key participants – an abstraction that occurs in a design problem

‣ useful for articulating the how and why to solve non-functional forces.

• Facilitate reuse of successful software architectures and design

15

Documenting Patterns

• GoF used a standard procedure to describe and document design patterns.

‣ Increases understandability.

‣ Many books have adopted the similar approach.

• By documenting the design pattern, knowledge becomes explicit, instead of
in the designer’s head.

‣ Patterns are often presented as pattern catalogues

‣ Important they are presented in a systematic form as a semi- formal
document.

16

GoF Pattern Format
• Pattern Name and Classification

‣ The pattern's name conveys the essence of the pattern succinctly. A good name is vital,
because it will become part of your design vocabulary. The pattern's classification
reflects a specific scheme (Creational, Behavioural, Structural).

• Intent

‣ A short statement that answers the following questions: What does the design pattern

do? What is its rationale and intent? What particular design issue or problem does it
address?

• Also Known As

‣ Other well-known names for the pattern, if any.

• Motivation

‣ A scenario that illustrates a design problem and how the class and object structures in

the pattern solve the problem. The scenario will help you understand the more abstract
description of the pattern that follows.

• Applicability

‣ What are the situations in which the design pattern can be applied? What are examples

of poor designs that the pattern can address? How can you recognize these situations?

• Structure

‣ A graphical representation of the classes in the pattern using UML. Usually class
diagrams and interaction diagrams.

17

GoF Pattern Format
• Participants

‣ The classes and/or objects participating in the design pattern and their responsibilities.

• Collaborations

‣ How the participants collaborate to carry out their responsibilities.

• Consequences

‣ How does the pattern support its objectives? What are the trade-offs and results of
using the pattern? What aspect of system structure does it let you vary independently?

• Implementation

‣ What pitfalls, hints, or techniques should you be aware of when implementing the

pattern? Are there language-specific issues?

• Sample Code

‣ Code fragments

• Known Uses

‣ Examples of the pattern found in real systems. We include at least two examples from
different domains.

• Related Patterns

‣ What design patterns are closely related to this one? What are the important

differences? With which other patterns should this one be used?

18

Catalogues

19

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

