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Design Patterns Background 

The Origins of Design Patterns



On Vocabulary
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Janousek single scull  

55-60kg 

Croker blades  

Carbon Honeycomb  

J13 Heavyweight Mould 

Rowfit wing rigger  
    



Patterns 
Vocabulary

• Hierarchical MVC UI Design


• Command pattern supporting multi-level undo/redo, incorporating Prototype 
based command creation.


• Composite contact list organisation


• Visitor contact search facility


• Strategy report generators
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Purpose of Design Pattern

1.Reuse


‣ Reuse elegant, proven and high quality designs across multiple contexts


2.Flexibility


‣ Introduce greater flexibility into the design


3.Documentation


‣ Improving the documentation and maintenance of existing system by 
furnishing an explicit specification of class and object interactions and 
their intent
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Origins

• "Each pattern describes a problem which occurs over and over again in our 
environment, and then describes the core of the solution to that problem, in 
such a way that you can use this solution a million times over, without ever 
doing it the same way twice."


Christopher Alexander, A Pattern Language: Towns/Buildings/Construction, 
1977 


• A object-oriented design pattern systematically names, explains and 
evaluates an important and recurring design in object-oriented systems
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Origins
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Alexander & Patterns
• Alexander studied the problem of objective quality by making observations of 

buildings, towns, streets, gardens, any spaces that human beings have built

‣ He reasoned that high quality constructs had things in common

‣ Architectural structures differed from each other even if they were of the 

same type solving the same problem. Yet different solutions were of high 
quality.


‣ He understood that structures could not be separated from the problem 
they are solving


• He proposed that different structures yielded a high quality solution to similar 
problems and extracted the similarity of the structures, the core of the 
solution, which he calls a pattern:

‣ solutions to a problem in a context

‣ 253 patterns covering regions, towns, transportations, homes offices, 

rooms, lighthing, gardens, ...

‣ each pattern defines subproblems solved by other smaller patterns
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Patterns in Software Design
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GoF

• The landmark book on software design 
patterns is:


  Design Patterns: Elements of Reusable 

  Object-Oriented Software

  Erich Gamma, Richard Helm, 

  Ralph Johnson, John Vlissides

  Addison-Wesley, 1995


• This is also known as the GOF (“Gang-
of-Four”) book.


• Design Patterns help you break out of 
first-generation (naive) OO thought 
patterns
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Regularly Appears in top-10 programming lists
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Pattern Definition

• Each design pattern systematically:


‣ Names


‣ Explains


‣ Evaluates 


an important and recurring design in object-oriented systems. 


• Patterns capture this design experience in a form that can be effectively 
communicated. 


• Often presented as a catalogue.
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To What End?

• Make it easier to reuse successful designs and architectures. 


• Express proven techniques making them accessible to developers of new 
systems. 


• Help developers choose appropriate design alternatives that make a system 
reusable and avoid options that compromise reusability. 


• Improve the documentation and maintenance of existing systems by 
furnishing an explicit specification of class and object interactions and their 
underlying intent. 
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Design Pattern Characteristics

• Design patterns represent solutions to problems that arise when developing 
software within a particular context


‣ Patterns = Problem/Solution pair in Context


• Capture static and dynamic structure and collaboration among key 
participants in software designs


‣ key participants – an abstraction that occurs in a design problem


‣ useful for articulating the how and why to solve non-functional forces.


• Facilitate reuse of successful software architectures and design
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Documenting Patterns

• GoF used a standard procedure to describe and document design patterns. 


‣ Increases understandability.


‣ Many books have adopted the similar approach. 


• By documenting the design pattern, knowledge becomes explicit, instead of 
in the designer’s head.


‣ Patterns are often presented as pattern catalogues


‣ Important they are presented in a systematic form as a semi- formal 
document.
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GoF Pattern Format
• Pattern Name and Classification 


‣ The pattern's name conveys the essence of the pattern succinctly. A good name is vital, 
because it will become part of your design vocabulary. The pattern's classification 
reflects a specific scheme (Creational, Behavioural, Structural).


• Intent 

‣ A short statement that answers the following questions: What does the design pattern 

do? What is its rationale and intent? What particular design issue or problem does it 
address? 


• Also Known As 

‣ Other well-known names for the pattern, if any. 


• Motivation 

‣ A scenario that illustrates a design problem and how the class and object structures in 

the pattern solve the problem. The scenario will help you understand the more abstract 
description of the pattern that follows. 


• Applicability 

‣ What are the situations in which the design pattern can be applied? What are examples 

of poor designs that the pattern can address? How can you recognize these situations? 

• Structure 


‣ A graphical representation of the classes in the pattern using UML. Usually class 
diagrams and interaction diagrams.
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GoF Pattern Format
• Participants  

‣ The classes and/or objects participating in the design pattern and their responsibilities. 

• Collaborations 


‣ How the participants collaborate to carry out their responsibilities. 

• Consequences 


‣ How does the pattern support its objectives? What are the trade-offs and results of 
using the pattern? What aspect of system structure does it let you vary independently? 


• Implementation 

‣ What pitfalls, hints, or techniques should you be aware of when implementing the 

pattern? Are there language-specific issues? 

• Sample Code 


‣ Code fragments

• Known Uses 


‣ Examples of the pattern found in real systems. We include at least two examples from 
different domains. 


• Related Patterns 

‣ What design patterns are closely related to this one? What are the important 

differences? With which other patterns should this one be used? 
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Catalogues
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