
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Design Patterns

Eamonn de Leastar

edeleastar@wit.ie

mailto:edeleastar@wit.ie

Template Method

Design Pattern

Summary

• Create an abstract class that
implements a procedure using
abstract methods.

• These abstract methods must be
implemented in derived classes
to actually perform each step of
the procedure.

3

Intent

• Define the skeleton of an algorithm in an operation, deferring some steps
to subclasses.

• Template Method lets subclasses redefine certain steps of an algorithm
without changing the algorithm's structure.

4

Motivation (example 1)

• Consider an application framework that provides Application and
Document classes.

• The Application class is responsible for opening existing documents
stored in an external format, such as a file.

• A Document object represents the information in a document once it's
read from the file.

• Applications built with the framework can subclass Application and
Document to suit specific needs.

• For example, a drawing application defines DrawApplication and
DrawDocument subclasses;

• A spreadsheet application defines SpreadsheetApplication and
SpreadsheetDocument subclasses.

5

Motivation (2)

6

Motivation (4)

• openDocument() is a template
method.

• A template method defines an
algorithm in terms of abstract
operations that subclasses
override to provide concrete
behavior.

• Application subclasses define the
steps of the algorithm that check if
the document can be opened
(canOpenDocument) and that
create the Document
(doCreateDocument). Document
classes define the step that reads
the document (doRead).

7

Motivation (4)

• The template method also
defines an operation that lets
Application subclasses know
when the document is about
to be opened
(aboutToOpenDocument), in
case they care.

• By defining some of the steps
of an algorithm using abstract
operations, the template
method fixes their ordering,
but it lets Application and
Document subclasses vary
those steps to suit their needs.

8

openDocument “template method”

• The abstract Application class
defines the algorithm for
opening and reading a
document in its openDocument
operation

• openDocument defines each
step for opening a document. It
checks if the document can be
opened, creates the
application-specific Document
object, adds it to its set of
documents, and reads the
Document from a file.

9

class Document
{
//...
 void openDocument(String name)
 {
 if (!canOpenDocument(name))
 {
 // cannot handle this document
 return;
 }
 Document doc = doCreateDocument();
 if (doc != null)
 {
 docs.addDocument(doc);
 aboutToOpenDocument(doc);
 doc.open();
 doc.doRead();
 }
 //...
}

Applicability

• To implement the invariant parts of an algorithm once and leave it up to
subclasses to implement the behaviour that can vary.

• When common behaviour among subclasses should be factored and
localized in a common class to avoid code duplication.

• To control subclasses extensions. Define a template method that calls
"hook" operations at specific points, thereby permitting extensions only at
those points.

10

Structure

11

Participants

• AbstractClass (Application)

• defines abstract primitive operations that concrete subclasses define to
implement steps of an algorithm.

• implements a template method defining the skeleton of an algorithm.
The template method calls primitive operations as well as operations
defined in AbstractClass or those of other objects.

• ConcreteClass (MyApplication)

• implements the primitive operations to carry out subclass-specific
steps of the algorithm.

12

Collaborations

• ConcreteClass relies on AbstractClass to implement the invariant steps of
the algorithm.

13

Consequences (1)

• Template Method is used prominently in frameworks.

• The framework implements the invariant pieces of a domain's
architecture, and defines "placeholders" for all necessary or client
customization options.

• The framework will then call client code, e.g. primitive operations of a
template method.

• This inverted control structure has been labeled "the Hollywood
principle" - "don't call us, we'll call you".

14

Consequences (2)

• Template methods typically call the following type of methods

• Concrete AbstractClass operations (that are common to all subclasses)

• Primitive operations that must be overridden

• Factory methods (creation of a certain type of object is a variability in
the template method, implemented as a Factory.

• Hook operations which provide default behavior that the subclasses
can extend if necessary. Often hook operations do nothing as a default.

• The specialization interface must be described (i.e. inheritance interface).
At minimum indicate which methods

• Must overridden

• Can be overridden

• Can not be overridden

15

Example 2

• A familiar example of a framework that is extended using a Template
Method is Java’s applet. When you create an applet you’re using an
application framework:

• you inherit from JApplet and then override init().

• The applet mechanism (which is a Template Method in this case) does
the rest by drawing the screen, handling the event loop, resizing, etc.

• An important characteristic of the Template Method is that it is defined
in the base class and changing it is prohibited, thus it should be
declared final.

• It calls other base-class methods (the ones you override) in order to do
its job, but it is usually called only as part of an initialization process
(and thus the client programmer isn’t necessarily able to call it directly).

16

UML Pattern Notation

17

Example 3
PlainTextDocument & HtmlTextDocument

public class HtmlTextDocument
{
 ...
 public void printPage (Page page)
 {
 printHtmlTextHeader();
 System.out.println(page.body());
 printHtmlTextFooter();
 }
 ...
}

public class PlainTextDocument
{
 ...
 public void printPage (Page page)
 {
 printPlainTextHeader();
 System.out.println(page.body());
 printPlainTextFooter();
 }
 ...
}

TextDocument superclass
public abstract class TextDocument
{
 ...
 public final void printPage (Page page)
 {
 printTextHeader();
 printTextBody(page);
 printTextFooter();
 }

 abstract void printTextHeader();

 final void printTextBody(Page page)
 {
 System.out.println(page.body());
 }

 abstract void printTextFooter();
 ...
}

Template Method

PlainTextDocument

public class PlainTextDocument extends TextDocument
{
 ...
 public void printTextHeader ()
 {
 // Code for header plain text header here.
 }
 public void printTextFooter ()
 {
 // Code for header plain text footer here.
 }

...
}

HTMLTextDocument

public class HTMLTextDocument extends TextDocument
{
 ...
 public void printTextHeader ()
 {
 // Code for header HTML text header here.
 }
 public void printTextFooter ()
 {
 // Code for header HTML text footer here.
 }

...
}

Except where otherwise noted, this content is
licensed under a Creative Commons Attribution-
NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

