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Programming Languages
• A programming language is a system of signs used to 

communicate a task/algorithm to a computer, causing the 
task to be performed


• The task to be performed is called a computation, which 
follows absolutely precise and unambiguous rules.


• Three components:


• The syntax of the language is a way of specifying what 
is legal in the phrase structure of the language; 
(analogous to knowing how to spell and form sentences 
English)


• The second component is semantics, or meaning, of a 
program in that language. 


• Certain idioms that a programmer needs to know to use 
the language effectively - are usually acquired through 
practice and experience 
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Family Tree
• Imperative languages: 

(Fortran, C, and Ada) enable 
programmers to express 
algorithms for solving 
problems.


• Declarative languages, (Lisp, 
Prolog, Haskell) allow the 
programmer to specify what 
has to be computed, but not 
how the computation is done.


• Object Oriented: can be 
viewed as a hybrid – of 
declarative (class structures) & 
imperative (methods) features.
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Characteristics of OO Languages

1.Object-based modular structure.


2.Data abstraction.


3.Automatic memory management.


4.Classes.


5.Inheritance.


6.Polymorphism and dynamic binding.


7.Multiple and repeated inheritance.


(Meyer)
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Data Structures & Problems

• Typical Data Structures:


• Lists, Stacks, Queues, Trees, Heaps


• Static and Dynamic implementations


• Typical Problem Categories:


• Search


• Decision


• Classification


• Generation & Enumeration


• Aggregation & Clustering


• Sorting


• Traversal 7



Design Patterns
• A design pattern is a proven solution for a general design 

problem. 


• It consists of communicating ‘objects’ that are customized 
to solve the problem in a particular context.


• Patterns have their origin in object-oriented programming 
where they began as collections of objects organized to 
solve a problem. 


• There isn't any fundamental relationship between patterns 
and objects; it just happens they began there.


• Patterns may have arisen because objects seem so 
elemental, but the problems we were trying to solve with 
them were so complex. 
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Pattern Levels

Architectural Patterns: 

• Expresses a fundamental structural organization or schema for software 

systems. It provides a set of predefined subsystems, specifies their 
responsibilities, and includes rules and guidelines for organizing the 
relationships between them. 


Design Patterns: 

• Provides a scheme for refining the subsystems or components of a 

software system, or the relationships between them. It describes 
commonly recurring structure of communicating components that solves a 
general design problem within a particular context. 


Idioms: 

• A low-level pattern specific to a programming language. An idiom 

describes how to implement particular aspects of components or the 
relationships between them using the features of the given language.
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Components
• Software components are binary units of:


• independent production, 

• acquisition, 

• deployment 


• that interact to form a  functioning program. 
(Szyperski)


• Emphasis has on reusable units

• A component must be compatible and interoperate 

with a whole range of other components.

• Two main issues arise with respect to interoperability 

information: 

• How to express interoperability information

• How to publish this information

10



More Component Definitions

• "A component is a nontrivial, nearly independent, and replaceable part of a 
system that fulfills a clear function in the context of a well-defined 
architecture. A component conforms to and provides the physical realization 
of a set of interfaces." (Philippe Krutchen, Rational Software)


• "A runtime software component is a dynamically bindable package of one or 
more programs managed as a unit and accessed through documented 
interfaces that can be discovered at runtime." (Gartner Group)


• "A component is a physical and replaceable part of a system that conforms to 
and provides the realization of a set of interfaces...typically represents the 
physical packaging of otherwise logical elements, such as classes, interfaces, 
and collaborations." (Grady Booch, Jim Rumbaugh, Ivar Jacobson, The UML 
User Guide, p. 343)
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Architecture
• The software architecture of a program or computing 

system is: 


• the structure or structures of the system, which 
comprise software components,


• the externally visible properties of those components, 
and


• the a set of rules that govern relationships among 
them.


• An architectural style is a family of software architectures, 
defining types of components and types of connections, 
and rules describing how to combine them. 


• A software architecture is an instantiation of an 
architectural style for a certain system. The components 
and connections may be decomposed into architectures 
themselves.
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Architectural Styles

• Batch


• Pipe & Filter


• Client/Server


• Blackboard


• Event Driven


• Plug-in


• Space Based (Tuples)


• Three-Tier
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• Network


• Data Flow


• Replication


• Hierarchal


• Mobile Code


• Peer to Peer



Frameworks

• A framework is a set of related components which you 
specialize, integrate and/or instantiate to implement an 
application or subsystem

• Usually, a semi complete application containing dynamic 

and static components that can be customized to 
produce applications


• Frameworks are targeted for a particular application domain 
& consists of a set of classes (abstract & concrete), whose 
instances:

• collaborate

• are intended to be extended, i.e. reused (abstract design) 

• do not have to address a complete application domain 

(allowing for composition of frameworks)

• Emphasize stable parts of the domain and their relationships 

and interactions
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Framework Structure
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Framework Example 
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Android 
Framework
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