
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

MSc in Computer Science

Design Patterns

Eamonn de Leastar

edeleastar@wit.ie

mailto:edeleastar@wit.ie

Design Patterns Context

Agile Software Development

Context

3

Programming Languages
• A programming language is a system of signs used to

communicate a task/algorithm to a computer, causing the
task to be performed

• The task to be performed is called a computation, which
follows absolutely precise and unambiguous rules.

• Three components:

• The syntax of the language is a way of specifying what
is legal in the phrase structure of the language;
(analogous to knowing how to spell and form sentences
English)

• The second component is semantics, or meaning, of a
program in that language.

• Certain idioms that a programmer needs to know to use
the language effectively - are usually acquired through
practice and experience

4

Family Tree
• Imperative languages:

(Fortran, C, and Ada) enable
programmers to express
algorithms for solving
problems.

• Declarative languages, (Lisp,
Prolog, Haskell) allow the
programmer to specify what
has to be computed, but not
how the computation is done.

• Object Oriented: can be
viewed as a hybrid – of
declarative (class structures) &
imperative (methods) features.

5

Characteristics of OO Languages

1.Object-based modular structure.

2.Data abstraction.

3.Automatic memory management.

4.Classes.

5.Inheritance.

6.Polymorphism and dynamic binding.

7.Multiple and repeated inheritance.

(Meyer)

6

Data Structures & Problems

• Typical Data Structures:

• Lists, Stacks, Queues, Trees, Heaps

• Static and Dynamic implementations

• Typical Problem Categories:

• Search

• Decision

• Classification

• Generation & Enumeration

• Aggregation & Clustering

• Sorting

• Traversal 7

Design Patterns
• A design pattern is a proven solution for a general design

problem.

• It consists of communicating ‘objects’ that are customized
to solve the problem in a particular context.

• Patterns have their origin in object-oriented programming
where they began as collections of objects organized to
solve a problem.

• There isn't any fundamental relationship between patterns
and objects; it just happens they began there.

• Patterns may have arisen because objects seem so
elemental, but the problems we were trying to solve with
them were so complex.

8

Pattern Levels

Architectural Patterns:

• Expresses a fundamental structural organization or schema for software

systems. It provides a set of predefined subsystems, specifies their
responsibilities, and includes rules and guidelines for organizing the
relationships between them.

Design Patterns:

• Provides a scheme for refining the subsystems or components of a

software system, or the relationships between them. It describes
commonly recurring structure of communicating components that solves a
general design problem within a particular context.

Idioms:

• A low-level pattern specific to a programming language. An idiom

describes how to implement particular aspects of components or the
relationships between them using the features of the given language.

9

Components
• Software components are binary units of:

• independent production,

• acquisition,

• deployment

• that interact to form a functioning program.
(Szyperski)

• Emphasis has on reusable units

• A component must be compatible and interoperate

with a whole range of other components.

• Two main issues arise with respect to interoperability

information:

• How to express interoperability information

• How to publish this information

10

More Component Definitions

• "A component is a nontrivial, nearly independent, and replaceable part of a
system that fulfills a clear function in the context of a well-defined
architecture. A component conforms to and provides the physical realization
of a set of interfaces." (Philippe Krutchen, Rational Software)

• "A runtime software component is a dynamically bindable package of one or
more programs managed as a unit and accessed through documented
interfaces that can be discovered at runtime." (Gartner Group)

• "A component is a physical and replaceable part of a system that conforms to
and provides the realization of a set of interfaces...typically represents the
physical packaging of otherwise logical elements, such as classes, interfaces,
and collaborations." (Grady Booch, Jim Rumbaugh, Ivar Jacobson, The UML
User Guide, p. 343)

11

Architecture
• The software architecture of a program or computing

system is:

• the structure or structures of the system, which
comprise software components,

• the externally visible properties of those components,
and

• the a set of rules that govern relationships among
them.

• An architectural style is a family of software architectures,
defining types of components and types of connections,
and rules describing how to combine them.

• A software architecture is an instantiation of an
architectural style for a certain system. The components
and connections may be decomposed into architectures
themselves.

12

Architectural Styles

• Batch

• Pipe & Filter

• Client/Server

• Blackboard

• Event Driven

• Plug-in

• Space Based (Tuples)

• Three-Tier

13

• Network

• Data Flow

• Replication

• Hierarchal

• Mobile Code

• Peer to Peer

Frameworks

• A framework is a set of related components which you
specialize, integrate and/or instantiate to implement an
application or subsystem

• Usually, a semi complete application containing dynamic

and static components that can be customized to
produce applications

• Frameworks are targeted for a particular application domain
& consists of a set of classes (abstract & concrete), whose
instances:

• collaborate

• are intended to be extended, i.e. reused (abstract design)

• do not have to address a complete application domain

(allowing for composition of frameworks)

• Emphasize stable parts of the domain and their relationships

and interactions

14

Framework Structure

15

Framework Example

16

Android
Framework

17

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

