WIT 2016 ITA Module

Architecture Styles
Lecture Group #3 - Part 2

T MSc in ESS (EA) —‘

Lecture Group #3 - Part 2
Architecture Styles

T2 wscinss e

Application-driven Styles

‘ MicroServices Architecture E

‘ Event-Driven Architecture (EDA) E }\ /M|

| Service Oriented Architecture (SOA) }—[Appllcatjn n-driven Styles }

‘ Ports & Adapters Architecture

Layered Architecture

&2 | wsciness (A [0 EE

Revision

Component: A component is a unit of software that is independently
replaceable and upgradeable.

That was short!

B

=2 | wmsciness(ea)

Layered Architecture

[Relatinns

[Assessment B

[Definitiun

[Purpnse E

[Duen.riew

T2 wscinss e

i

What does it look like?

MSc in ESS (EA)

Business

External

Business
Actors

-

Swstem
|: Service

. Consumers

Presentation layer [(#)]
User
Interaction
Components
I
allowed to use
Application layer ()]
Application ."'/.- Application
Components | Services
ANy
allowed
Domain layer @
Domain .-"/.- Domain
Components | Services
\
allowed
Infrastructure layer @

Data Access
Components

.-'/. Infrastructure \
| Services

S/

Common @

Shared
Enterprise
Components

Technical
Components

Purpose

The purpose of the Layered Architectural Style is to rigorously separate the various
concerns of an application into well-defined logical groupings of software
components.

Each separate grouping has a distinct role and functionality: a responsibility that a
set of similar types of components inherit and share.

These logical groupings are called LAYERS; large/complex enterprise applications are
often partitioned into layers.

Structuring an application in layers help to differentiate between the different kinds
of tasks performed by its constituting components, making it easier to create a
design that supports re-usability.

Each logical grouping contains a number of discrete component types grouped into
sub layers, with each sub layer performing a specific type of task.

The Layered style primarily aims to isolate the expression of the domain model (i.e.
also referred as core business logic), and eliminate any dependency from

infrastructure concerns, user interface experience, or even application logic that is
not business logic.

In a layered architectural style, each layer is cohesive and only depend on the layers
below.

e MSc in ESS (EA)

To isolate components

Layers provide ISOLATION.
Change of one layer minimizes impact to others.

The more distant a layer is from another layer changing, the less
impacted it will be.

The closest a layer is from another layer changing, the more likely it is
to be impacted.

5

=2 | wscinkss (A [|

To se parate concerns

Components in a layer collaborate to achieve operations of a same
nature within the layer.

A component does not belong to the Presentation layer without
behaving like a Presentation component.

A component does not belong to the Business Domain layer without
behaving like a Domain component,

s MSc in ESS (EA)

To distribute/allocate components

The layered architecture style emerged in a time where components
aimed to be distributed so to load balance computing resources.

It provides a clear delineation between layers so to map onto server

infrastructure locations, where certain technology or design
decisions must be made.

Layers can be mapped to physical tiers infrastructure, for example a
three-tier infrastructure.

Layers of a design can be distributed across physical boundaries.

2

=2 | MScin ESS (EA)

Examples of Physical Tier Allocation

Domain layer ()
Infrastructure layer (@D

Presentation layver ()
Application layer (O

Application layer @D

Presentation layer

Domain layer ()

Infrastructure layer (D

&2 | wmsciness ()

Layers Description

| Vertical Layer B

‘ Infrastructure Layer E }\

| Business Domain Layer [E Actors J

‘ Application Layer E /

‘ Presentation Layer =

&2 | Mmscinkss (ea) [DEEE|

Presentation Layer

This layer holds user-oriented functionality responsible for managing
user interaction with the application.

It contain only components that addresses user view rendering and
usage scenarios (task work flow, exception flows).

As such, components in this layer provide a bridge into the core
business logic encapsulated in the business domain layer.

Data validations found in this layer are not the kinds that belong in
the domain model - for example form validation doesn't include any
business logic validation.

MSc in ESS (EA)

Purpose

The presentation layer contains the components that implement and
display the user interface and manage user interaction.

This layer includes controls for user input and display, in addition to
components that organize user interaction.

2

=2 | MScin ESS (EA)

Responsibility

Presentation Layer

]
Components

Web: User experience, User
interface, Page composition,
Page Rendering, Walidation

Related Patterns:

- Template View (Server Side
Scripting)

- Model View Controller (MVC)
- Model View Presenter (MVP)

o

L
A

MSc in ESS (EA)

Ul Process
Components

Uszer session, Request/
response caching, Mavigation
flow

Related Frameworks:
- PhoneGAP
- Angular]S
- Struts

Application Layer

The Application Layer defines the application boundary and its set of
available operations from the perspective of interfacing client layers.

It establishes a set of available operations that coordinate an

application response answering requests from the presentation layer,

or from the Application Layer of other inter-connected application /
system.

2

=2 | MScin ESS (EA)

Purpose

The Application Layer provides services to other layers of external
applications (e.g. B2B integration).

This layer exposes the business domain functionality of a system via
an API (Application Programming Interface).

It allows different types of clients to use different channels to access
the domain logic of an application.

Components in this layer are the direct clients of the domain model,
though themselves possessing no business logic.

They remain very lightweight, coordinating and aggregating data
operations performed against domain objects.

They are the primary means of expressing use cases or user stories
on the model.

e MSc in ESS (EA)

Responsibility

Data Loaders CD

User Devices {0

AP| Gateway O

Application Layer |

/

[Services

» Application '
'| ‘
e

b)

Application m

Facade

Service
Messages

82 | MScin ESS (EA)

Responsibility

Components provide access application functions via a facade.

A facade combines multiple business operations into a single
operation that makes it easier to use the business logic.

It reduces dependencies because external callers do not need to
know interaction details of the domain components and the
relationships between them.

Avoids coupling the sender of a request to its receiver by allowing
more than one object to handle the request.

Encapsulate request processing in a separate command object with a
common execution interface.

e MSc in ESS (EA)

LE

)

Related Patterns

Related Patterns:

- Facade

- Backend for Frontend / Aggregate
- Factory

Related Frameworks:
- Restful
- Jearsey
- Spring

| MScin ESS (EA)

Business Domain Layer

This layer implements the core functionality of the system, and
encapsulates the core business logic of an application. It generally

consists of components, some of which may expose service
interfaces that other callers can use.

2

=2 | MScin ESS (EA)

Purpose

Depending of the variant of Layered style implemented, components
from the Presentation Layer or the Application Layer can pass data
Business layer.

The application use this data to perform a business process, make a
decision, or read/write application state.

This Layer groups business domain logic - i.e the work that an
application needs to do for a business domain.

It involves calculations based on inputs and stored data, validation of
any data that comes in from the presentation, and figuring out
exactly what data source logic to dispatch, depending on commands
received from above layers.

e MSc in ESS (EA)

Responsibility

Business [:] Rules/f [;‘,'::] Domain [::]

Process Decision Entities
Workflow Logic Composition

&2 | wmsciness ()

Actor: Process Workflow

Many business processes
involve multiple steps that must
be performed in the correct
order, and may interact with
each other.

Process workflow components
define and coordinate long
running, multistep business
processes, for example a
sequence of transactional
screens accomplishing a task,
requiring further operations or
validation at each step.

o

L
A

MSc in ESS (EA)

| State-Driven Workflow B |\\

‘J Sequential Workflow & | 7

,
\\\
!

Process Workflow =

|‘ Human Workflow B |

|' Data-Driven Workflow B |

s
e ’/
-
/

Actor: Decision Logic

Business logic is defined as any application logic that is concerned
with:

(1.) the retrieval, processing, transformation, and management of
application data

(2.) the execution of business logic rules
(3.) and ensuring data consistency and validity.

To maximize reuse opportunities, business logic components should
not contain any behavior or application logic that is specific to a use
case or user story.

2

=2 | MScin ESS (EA)

Actor: Domain Entity

Domain Entities, encapsulate data necessary to represent real
business world elements, such as Customers or Orders in an
Enterprise application.

These components store data values and expose them to client
components; manage data used by the application; and provide
stateful programmatic access to the business data and related
functionality.

These components can validate the data contained within the entity
and encapsulate domain logic to ensure data consistency / integrity.

For example, an Entity translator component transforms request
message data types to business types, and reverses the
transformation for responses.

Table Module. A single component that handles the business logic for
all rows in a database table or view.

e MSc in ESS (EA)

E':F =
[

Related

Patterns:

- Domain Model: An object model of the business domain that
incorporates both behavior and data.

- Data Mapper. Implement a mapping layer between objects and the
database structure that is used to move data from one structure to
another while keeping them independent.

- Data Transfer Object. An object that stores the data transported
between processes, reducing the number of method calls required.

Related Frameworks:

- BRE/Drools
- Workflow/]PBM

| MScin ESS (EA)

Infrastructure Layer

This layer provides access to data hosted within the boundaries of
the system, and data exposed by other networked systems through
infrastructure services (e.g. SFTP). The data layer exposes generic
interfaces that the components in the business domain layer can
consume.

For most enterprise applications this is a database that is primarily
responsible for storing persistent data, however this layer also
communicates with other systems that carry out tasks on behalf of
the application. These can be transaction monitors, other
applications, messaging systems, etc.

MSc in ESS (EA)

Purpose

The infrastructure layer isolate components bridging core domain
model components to a server infrastructure. Responsibilities like
data persistence (on file, in databases) and messaging mechanisms
reside in this layer.

Messages may include those sent by enterprise messaging
middleware systems or more basic e-mails (SMTP).

In general any technical component and/or framework that provide
low-level services for the application is grouped in the infrastructure
layer. The higher-level Layers couple to the lower-level components
of the infrastructure layer to reuse the technical facilities provided.

MSc in ESS (EA)

Responsibility

Data Services
Agents

Data Helpers
! Utilities

Data Access
Components

Infrastructure
Services

MSc in ESS (EA)

Related Patterns

[SENiEE Agents - Helpers [E

[Data Access [E

T2 wscinss e

Actor: Data Access

Object Relational Mapping (ORM)

Row Data Gateway - An object that acts as a gateway to a single
record in a data source.

Table Data Gateway - An object that acts as a gateway to a table
or view in a data source and centralizes all of the select, insert,
update, and delete queries.

Table Module - A single component that handles the business
logic for all rows in a database table or view.

Active Record - Include a data access object within a domain
entity.

Query Object - An object that represents a database query, for
example a Stored Procedures or an SQL statement.

Repository - An in-memory representation of a data source that
works with domain entities.

e MSc in ESS (EA)

Actor: Service Agents - Helpers

Batch

Partition multiple large batch jobs to run concurrently. Allow multiple
batch jobs to run in parallel to minimize the total processing time.
Transactions

Capture Transaction Details. Create database objects, such as triggers
and shadow tables, to record changes to all tables belonging to the
transaction.

Transaction Script. Organize the business logic for each transaction in
a single procedure, making calls directly to the database or through a thin
database wrapper.

Resources Lock. Ensure that changes made by one session do not
conflict with changes made by another session. Prevent conflicts by
forcing a transaction to obtain a lock on data before using it.

Helpers / Utilities components
E.g. Markup Translations (XML <=>JSON)

g_, |
=

W= | MScin ESS (EA)

Related Development Frameworks

Hibernate

=2 | MscinEss (EA)

Vertical Layer

If this layer is impacted, changes occurs all layers depending on
technical / utility classes defined in the Vertical layer - e.g. security,

logging.

5

=2 | wscinkss (A [|

Variations

[Inverted Layering Variant

[Relaxed Layering Variant

T2 wscinss e

Relaxed Layering Variant

Presentation layer ()]
Comman ((#))] User —allewed to use
Interaction =™ :
Components TN : |
[
L
1 : [
L ¥
Application layer : : (%)
S !
Application .-'/ Application I :
Compenents [Services | b —allewed to use
Shared / | : =,
Enterprise E v Ly i
Components o : :
b I
| |
R J |
Technical Domain layer : : ()]
Components : |
- . I
Domain 4 Domain hY i ! ——allowed to use
Components [Services | : | 1|
/ I
\ / i I :
| ! I
1 : [
| | :
¥ ¥ L}
Infrastructure layer [(#)]
Data Access f./'- Infrastructure
Components | Services :|
N /

(L

MSc in ESS (EA)

Purpose

For simpler applications, all layers of an architecture may not be
required. It is the role of an architect to select the appropriate layers
of her design and the type communication between each.

For example, a presentation layer may communicate directly with an
infrastructure layer through its services sub-layer layer.

Systematically enforcing the use of all intermediary layers would
make of architecture style a system of “pass-through” forcing the
creation of boiler plate code.

e MSc in ESS (EA)

el

Inverted Layering Variant

Infrastructure layer

o)

MSc in ESS (EA)

Data Access r.»"- Infrastructure
Components | Services :| Common
0 S
I I I
| | |
| | |
: | '
| | +
} I Presentation layer
| |
| |
I I User
| | Interaction
} I Components Share_d
| | Enterprise
| | | Components
l : allcwed to use
: ¥ ¥
| Application layer Technical
l Components
i Application /" Application
l Components |: Services
I Ny
] |
: allowed to use
4 ¥
Domain layer
Domain /" Domain
Components | Services |
..\x.__ _,-’;

Purpose

We move the Infrastructure Layer above all others, enabling it to
implement interfaces for all Layers below.

Above layers implement interface abstractions defined in lower
layers.

A component that provides low-level services (e.g. Infrastructure)
depends on interfaces defined by higher-level components (e.g.
Domain).

Dependency Injection / Inversion of Control patterns enable this
architectural style variant, providing ways to acquire the
implementations.

e MSc in ESS (EA)

’5 —

LE

Interactions

A layer should not expose internal details on which another layer
could depend. When defining an interface for a layer, the primary
goal is to enforce loose coupling between layers. Doing so, each layer
may couple only to itself and below. The interface to a layer should

be designed to minimize dependencies by providing a public API that
hides details of the components within the layer.

2 | MScin ESS (EA)

Rules for Interaction between Layers

Pass-through Request: Request has to go through all layers back and
forth.

Top-down Interaction: Higher level layers can interact with layers
below, but a lower level layer should never interact with layers above,
doing so avoiding any risk of circular dependencies between layers.
Event monitoring can be used make components in higher layers
aware of changes in lower layers without introducing dependencies.

Strict Interaction: Each layer must interact with only the layer directly
below. This rule will enforce strict separation of concerns where each
layer knows only about the layer directly below. The benefit of this
rule is that modifications to the interface of the layer will only affect
the layer directly above.

Loose Interaction: Higher level layers can bypass layers to interact with
lower level layers directly. This improves performance but will also
increase dependencies, i.e. modification to a lower level layer can
affect multiple layers above.

e MSc in ESS (EA)

Assessment

Executability (Development, Testability)

Over-engineering of proxies propagating down requests to deeper layers. Team Specialization
loosing track of the 'big picture’, mixing up the business value of the solution with IT concerns,
conflict of interest. Difficult to understand end to end, overwhelming. Handles complexity well

overall. Style promotes good testability and handles complexity well.

Performance ll

MSc in ESS (EA)

Communication between layers can become costly over time because of abstraction and data
exchange overhead.

Topology (Deployment / Allocation) [l

Requires entire redeployment of the entire application via an integrated release. Referred as

“monolithic” because of coarse grain deployment.

Scalability

Can physically scale at a price, by adding more power to a single server, such as more memory, or

by adding clusters.

Maintainability / Flexibility (Ease of change, Coupling)

Multiple teams are called into to perform one change, but layer isolation ensures proper
coordination of efforts. If architecture well documented and layering isn't violated, change can be

managed via modularity. However, ease of change killed by monolithic deployment of new releases.

Availability / Reliability (Resilience, Failures recovery)

Multitude of vendor and open sourced solutions for static libraries analysis, and dynamic

monitoring of runtime modules.

Security

Relies on container-based security by default, and can be augmented by S5O/SAML.

Portability

In Java EE, can be migrated to different middleware platform with little reconfiguration, but overall it
is Java EE or nothing: Can not employ diverse programming languages to answer specific specialized
needs.

Ports & Adapters Architecture

[Relatinns

[Assessment B

[Definitiun

[Purpnse E

[Dueruiew =

T2 wscinss e

Overview

The purpose of the Ports & Adapters architectural style is to allow
many disparate "clients" to interact with an application in consistent
way (i.e. regardless if the client in question is a database, a user
interface, another system).

Client inputs are transformed by inbound Adapters, so that the
internal core application API can be invoked. Application core logic
outputs are then transformed using outbound adapters.

Adapters provide a level of abstraction reducing coupling with the
environment. Inbound and outbounds mechanisms can be replaced
with minimum impact on core application components. For example,
an output mechanism can be swapped from persistence to
messaging without the application API to be changed.

e MSc in ESS (EA)

What does it look like?

Inbound O

ports wsedby

Inbound protacal /
comm. mechanism
e.q.

- HTTP (browser,
REST, SOAP)

- M5

{...] .

Inbound Adapters & |

Un-

i Marshalling IQ\'
marshalling ‘

Application

Domain API

" application

L4

e.qg.
- Function call /
dependency injection
adapter

- Publishfsuscribe event
adapter

-Web Service adapter

i...] /

&2 | Mmscinkss (ea) [DEEE|

Application
Components

Domain
Model

- —m x_|

2]

Outbound =
Adapters

Marshalling IQ\'
Un-
marshalling

Outhound 4O
ports

e.qg.
- RDBMS adapter

- ORM adapter

- NoSQL adapter

- Message adapter
- Event notification
adapter

i...] /

Ak
SO

Qutbound protocol f
comm. mechanism

e.g.
-HTTP (browser,
REST, SOAP)

- M5

M.

Purpose

This architecture style allow an application to equally be driven by
users, programs, automated test or batch scripts, and to be

developed and tested in isolation from its eventual run-time devices
and databases.

2

=2 | MScin ESS (EA)

To improve transparency

This style differs from layered architecture styles where business
domain logic can too often hide behind several layers of abstraction.
The Ports and Adapters style, while providing some level of
TECHNICAL abstraction aims to provide ease of access to the core
application and its domain model.

2

=2 | MScin ESS (EA)

To minimize footprint

This style aims to simplify the overall design of complex application
suites. Ports and Adapters can be used as a thin wrapper surrounding
a legacy platform, or simply permits business-to-business service
applications of the same architectural style to use each other, for

example over the web in the context of a Service Oriented enterprise
architecture landscape.

2

=2 | MScin ESS (EA)

To se parate concerns

This architecture style primary goal is to keep business logic isolated
in the application core. Ports and adapters subtract the need of

inserting isolation layers within the architecture just to interface with
external entities.

n¥yg |

“=F=" | MScin ESS (EA)

To isolate logic

The ultimate benefit of a ports and adapters implementation is the
ability to run the application in a fully isolated mode. The Application
connects with its surrounding via its API. Adapters provide means for
an application to speak with its environment.

In any case, from the application’s perspective, if the environment

changes from SQL database to Graph, the conversation across the
API doesn't not change.

g_, |
=

W= | MScin ESS (EA)

Actors

=8

{Pnrtsmclapters components =

{Eure Application components IEJ

Al:turs

{Appllcatlun Boundary component E

MSc in ESS (EA)

’5 —

L/
[

Actor: Application Boundary component

The application boundary is also referred as the use case (or user
story) boundary. Use cases based on application functional
requirements, not on the number of diverse clients or output
mechanisms.

Functionality the application offers is available through an API
(application programmed interface) or function call. Any number and
type of clients may request through various Ports, but ultimately,
each Adapter delegates to the application APL.

The application may have multiple ports and adapters to
communicate with its immediate environment. The application has a
consistent way to interact with its adapters. The application doesn't
know know about the nature of the things on the other side of the
adapters.

| MScin ESS (EA)

Actor: Core Application components

The core an application consists of the algorithmic logic essential to
its purpose. The core realize business use cases. The domain model is
at heart of the application. When the application receives a request
via its API, it uses the domain model to fulfill all requests involving
the execution of business logic. The application API is published as a
set of Application Services. Application Services are the direct client
of the domain model, just as when using Layers. Changing the
domain means changing the essence of the application, its services
and has a ripple effect on ports and adapters.

2

=2 | MScin ESS (EA)

Actor: Ports/Adapters components

A port identifies a purposeful conversation. There will typically be
multiple adapters for any one port, for various technologies that may
plug into that port. Typically, these might include a phone answering
machine, a human voice, a touch-tone phone, a graphical human
interface, a test harness, a batch driver, an http interface, a direct
program-to-program interface, a mock (in-memory) database, a real
dat?base (perhaps different databases for development, test, and
real use).

The number of ports isn't limited or set, however a number of
generic categories have been identified over the years.

For each external device there is an "adapter” that converts the API
definition to the signals needed by that device and vice versa.

Some of these adapters can be two-way dependencies.

The distinction between “primary “and” secondary “lies in who
triggers or is in charge of the conversation.

e MSc in ESS (EA)

Actor: Port

A port identifies a purposeful conversation. There will typically be
multiple adapters for any one port, for various technologies that may
plug into that port.

The number of ports isn't limited or set, however a number of
generic categories have been identified over the years. For each
external device there is an "adapter” that converts the API definition
to the signals needed by that device and vice versa. Some of these
adapters can be two-way dependencies.

Typically, these might include a phone answering machine, a human
voice, a touch-tone phone, a graphical human interface, a test
harness, a batch driver, an HTTP interface, a direct program-to-
program interface, a mock (in-memory) database, a real database
(perhaps different databases for development, test, and real use).

e MSc in ESS (EA)

Actor: Adapter

A port is more or less the messaging mechanism, and the Adapter is
the message listener, because it is the responsibility of the message
listener to grab data from the message and translate it into

parameters suitable to pass into the Application’s API (the client of
the domain model).

2

=2 | MScin ESS (EA)

Variations

While in essence all built on the same mechanics, there are many
variants of the Ports & Adapters architecture style, depending of the
number and diversity of inbound and outbound adapters plugged to
application boundary, and how operations are invoked and

synchronized by the adapters (event-based, message, command,
etc.).

2

=2 | MScin ESS (EA)

Interactions

An instance of the application is created, as well as the adapters. The
adapters are passed to the core logic (ideally via dependency
injection). Adapters start to drive the application.

As events arrive from the outside world at a port, a technology-
specific adapter converts it into a usable procedure call or message

and passes it to the application. The application is ignorant of the
nature of the input device.

When the application has something to send out, it sends it through
an adapter/port, that the receiving technology (human or automated)

has the appropriate means to consume information, hence feeding it
back to the client / consumer,

e MSc in ESS (EA)

Assessment

Executability (Development, Testability)

The size and scope of the shared application logic must be kept under control, otherwise at risk to
become a monolithic architecture over time. Testability is high (mock up objects, dependency
injection). The core logic can be tested independent of outside services. A big advantage of this
architecture style is that Adapters are easily developed for test purposes. The entire application and
domain model can be designed and tested before clients and storage mechanisms exist. Significant
progress can be made on the core without the need for supplementary technical components.

MSc in ESS (EA)

Performance

Praximity of components within the application boundary and in-process call promote good
performance. However uncontrolled amount conversation between ports/adapters + badly

implement marshaling and UN-marshaling can impact performance.

Topology (Deployment / Allocation) ll

This architecture implies allocation on only one main node/component. Referred as “monolithic”
because of coarse grain deployment. Adapters requires close version control. Requires entire

redeployment of the entire application via an integrated release.

Scalability

Can physically scale at a price, by adding more power to a single server, such as more memory, or
by adding clusters.

Maintainability / Flexibility (Ease of change, Coupling)

Not easy to replace application boundary / core domain components without affecting the whole
application core.

It takes a toll in terms of time and effort to plan the release and manage tightly coupled
interdependent modular development. As the application grows in size, due to tight coupling
between components, it becomes difficult to do easy and frequent releases. Release planning takes

a lot of time of people from various groups.

Availability / Reliability (Resilience, Failures recovery)

Frequent release is discouraged for making sure the application should not break due to the newly
released feature.

Security

From scratch.

Portability

Can not employ diverse programming languages to answer specific specialized needs.

Related Patterns

Mock Object

Adapter

Dependency Injection (encourages a way of producing an
architecture that leans naturally toward the development of a Ports

and Adapters style).

5

=2 | wscinkss (A [|

LE

)

Related Implementation / Frameworks

Apache Isis (a Java framework for rapidly developing domain-driven
applications).

Spring (dependency injection framework).
Clean Architecture (Android variant of Ports & Adapters).

| MScin ESS (EA)

Service Oriented Architecture (SOA)

[Relatinns

[Assessment B

[Definition

[Purpose [E

[Duen.riew

T2 wscinss e

'ﬁ' o

L/
[

Service Oriented Architecture (SOA)

A Service Oriented Architecture style is a mean to force COARSER
GRAIN coupling at BUSINESS PROCESS level (not service, not
component) between distributed applications via standard, platform
independent, well-defined interfaces. The primary driver for service
orientation adoption is interoperability - i.e. protection of
investments by supporting legacy system integration, also referred as
Enterprise Application Integration (EAI).

The goal is to architecture processes as a composition of processes
(bricks of a SOA), via Remote Access or Messaging over the network.

This architectural style is not only rooted in open standards
interchange, but also enabled by platforms providing a wide range of
foundational infrastructure services to orchestrate data exchange
between applications (Message Bus for example).

| MScin ESS (EA)

What does it look like?

o2

CICS, IMS ERP Client Legacy El
Server Platforms
Legacy

Service Orchestrator [(9)]
Business Process Management /
Business Activity Monitoring
Composed services - Process / R
Services, e.g. a macro PBusmess ':>
workflow, state remains stable rocesses
over multiple service
invocations. /
V.
Services ()]
Service
Contracts -
Enterprise
[Services]
/ Application ¢ Service Enterprise > Infrastructure
[Services I Registry Service Bus | Services]
Modern Applications (@ | |Protocol transformation.
Mote that Web Services is not
Applicati a synonym for SOA; Web
N— c Dphca 'og Services are one possible way
omponents of realizing the infrastructure
aspects of S0A. E
/
Legacy Applications @

SOA is an architectural
paradigm for dealing with
business processes
distributed over a large and
heterogeneous landscape of
existing and new systems that
are under the control of
different owners.

The key concepts of SOA are
services, interoperability. and
loose coupling. The key
ingredients of SOA are the
infrastructure (ESB),
architecture, and processes.

MSc in ESS (EA)

How does it Work?

Create Quote
\ \

Service Bus

1

)
i
i
i
1
I
1
B e
‘ Create |:>‘

1
\
1
]
*.

Customer

T —
Calculate =
‘ Quote

Service Bus Service Bus

.- ————
- ————

BN ==
Configure |:(> (Upload |:> (Medical |:(>
Benefits ‘ ‘ Census ‘ underwriting
checks
Service Bus
|
| E
| Contract
B -

"' Billing .:(>"

&2 | Mmscinkss (ea) [DEEE|

Purpose

Service Oriented Architecture (SOA) is an architectural paradigm for
dealing with business processes distributed over a large and
heterogeneous landscape of existing and new systems that are under
the control of different owners.

This architectural style promotes the orchestration of “resources” in a
single consolidated location, to compose coarse grain enterprise
services, in turn to be orchestrated for other purposes.

The key ingredients of of this architectural style is interoperability
and loose coupling via open standards for data contracts and
message envelopes, and enterprise service bus infrastructure (ESB).

e MSc in ESS (EA)

08—

f;

)

To promote Service Decoupling

Using a service registry.

Using protocol transformation.
Using message delivery.

Using data contracts.

| MScin ESS (EA)

To maximize Re-use

Orchestration is a key concept of the SOA style aiming to aggregate
services for future re-use.

It re-composes existing services to a new service that has central
control over the whole process.

For example, BPEL is a WS standard for service orchestration,

mapping service to business process, for which development tools
and engines are available.

2

=2 | MScin ESS (EA)

Actors

Policy
Endpoint <O
service heres to policy bpverns
i service os
cofsum inds to Contracts P
tonsu stands SEMVICE T nts

Service

Service 3|
Consumer
contract describes

. SErvice s /receives
COnsuUmer freceives

Messages

Messages are moved back
and forth between the
service and its consumers.

{ MScinESS (EA)

Actor: Basic Service

A basic service provides “basic” functionalities from a single backend
application. These services are usually part of the first set of services
that wraps or hides implementation details of a specific component.
Basic services can be data-driven or logic-driven. They are the base

for composing higher services such as composed services and
process services.

2

=2 | MScin ESS (EA)

08—

f;

)

Actor: Composed Service

A common term for services that are composed of basic services
and/or other composed services.

| MScin ESS (EA)

Actor: Process Service

A process service represents a work flow or sequence of complex
process steps. From a business point of view, this kind of service
represents a macro flow, which is a long-running flow of activities
(services) that is interruptible (by human intervention). Unlike basic
services and composed services, these services usually have a state
that remains stable over multiple service calls.

2

=2 | MScin ESS (EA)

Variations

In the Service Oriented Architecture style, variations pertain to
different ways to bind services.

Simple mediation and re-routing, where an inbound message is
transformed and enhanced enhanced, The resulting output becomes
the input of the next immediate target service.

Orchestration, where a message is received and is the trigger for the
invocation of downstream services, to compose clusters of message
requests that need to happen in sequence or all at the same time.

Choreography, where a message is received and is the trigger for a
chain of invocation of downstream services, in turn each informing
the other about next the next service to invoke.

e MSc in ESS (EA)

Interactions

The fundamental rule of interaction in a SOA architecture style is that
no service should accesses another service underlying component
logic or data store. A corollary to this is that no component (a suer
interface front-end, or a external system) should be allowed to
bypass the services. Any form of component interaction requires to
obtain a service from a service registry, understand its
communication contract before invoking its endpoints, or sending a
message.

e MSc in ESS (EA)

About Web Services Protocols

Web Services are set of standards that serves as one possible way of
realizing a SOA infrastructure. Initially started with the core standards
XML, HTTP, WSDL, SOAP, and UDD]I, it now contains over 60 standards
and profiles developed and maintained by different standardization
organizations, such as W3C, OASIS, and WS-I. SOAP is the basic protocol
of Web Services. As an XML-based format, it defines the format of the
header and body of a Web Services message. The SOAP protocol allows
different types of message exchange. Web Services standards define all
that is necessary to provide interoperability between systems without the
need to buy some specific hardware or software, provided all exchanges
are performed via SOAP.

But since the goal of an SOA architecture style is the connect
heterogeneous application, there are many forms of data interchange
protocols supported using a Message Bus component, allowing classic
file transfer, asynchronous message delivery, and invocation of
synchronous web services.

e MSc in ESS (EA)

Interaction method: Point to Point RPC

Point to point RPC: An interaction mechanism for inter-application
communication between components referred as SOAP that evolved
from RMI and XML-RPC. The principle states that any component of
an SOA exposes a web service interface that can be invoked by an
external application. It simulates a function call, performed from a

remote component.

MSc in ESS (EA)

Interaction method: Message Queues

Message Queues: An interaction mechanism for message exchange
between components using “queues” providing a set of services:
Guaranteed message delivery (fire and forget), Continuous message
monitoring (confirmation of reception), Broadcast delivery (fire and
forget to multiple locations), Transactional: Broadcast requiring
confirmation before committing.

5

=2 | wmsciness(ea)

Interaction method: Message Bus

An Message Bus (ESB) is an EAI platform implementing all of the
above interaction mechanisms. It is commonly accepted as the
infrastructure of a SOA landscape that enables the interoperability of
services between enterprise applications. Its core task is to provide
connectivity, data transformations, and (intelligent) routing so that
systems can communicate via services. An ESB also provides
additional abilities that deal with security, reliability, service
management, and service composition.

2

=2 | MScin ESS (EA)

Assessment

Executability (Development, Testability)

Facilitates the integration of different applications/platforms from different vendors. Easy to test
and debug when managed as small, independent services.

Distributed logging essential to monitor holistic view of a distributed tran saction.

Difficult to track service flow across applications. Complexity can explode, contracts can explode,
requiring some external tooling to keep the event flow logic managed and under control using BPEL,

BPM platforms.|

Performance

MSc in ESS (EA)

Every time a service interacts with another service, complete validation of every input parameter
takes place. This increases the response time and machine load, and thereby reduces the overall
performance.

A lot of conversations between components. badly implement marshaling and UN-marshaling can
impact performance.

Topology (Deployment /Allocation)

Probably one of the best understood and documented enterprise deployment architecture style,

leveraging Web standards firewall/proxy configurations.

Scalability

Leveraging Web standard protocols for load balancing. Multiple instances of a single service can run

on different servers at the same time. This increases scalability and availability of the service.

Maintainability / Flexibility (Ease of change, Coupling)

Services are usually published to a directory where consumers can look them up. This approach
allows a service to change its location at any time. Services can be reused in multiple applications
independent of their interactions with other services. Services can be easily updated or maintained
as long as contract interfaces do not change so large, complex applications can thus be managed
easily.

However contract interfaces often change, must be versioned and managed centrally (referred as

SOA governance).

Availability / Reliability (Resilience, Failures recovery) [l

In case of failure, a log analysis must be performed to track down issues. Service Oriented
Architecture are often seen as brittle - i.e. low tolerance for failure.

This is mainly because common initial assumptions are that a network is reliable with low latency
and no bottlenecks, remote servers are responsive and always available. SOA requires an
understand of risk manage ment.

Security

WS-I Security, an open standard protocol to sign SOAP messages using XML signature and XML

encryption to provide end-to-end security.

Portability

Services can be developed in different languages and leverage different technologies.

Related Patterns

Related Patterns:
- “Document/literal wrapped" pattern
- Message Broker
...many enterprise integration patterns.

Related Frameworks:
- Apache ODE, |BPM
- JMS, Active MQ

- Mule ESB

5

=2 | wscinkss (A [|

Event-Driven Architecture (EDA)

[Relatiuns

[Assessment =

[Definitiun

[Purpnse E

[Duewiew

T2 wscinss e

What does it look like?

e.qg.
a message queue, a
web-service endpoint

Event Flow ::)-

Publisher e Event Queues
[l ————— »-

Event
Channels e.q.

a message queueftopic
broadcasting processing
events to many processors

Asynchronous [»
Event Trigger |

v
mediator [listens to

Initial Event

processof listens to

Event Mediator ((#)] Event Processors @

" Asynchronous
 Bwent Trigger |

Consumer —0)

Application
Components

.

Central mediator component

orchestrates the sequence of Processing
stpes (or parallelism) by which Events
Processing Events are fired to
downstream event channels to
accomplish a process.

Event processors implement
the business logic. The
granularity of processor

CCJ““"“

components varies, Processor
components collaborate to
Contract perform an operation.

----- 2 | Mscin ESS (EA) [0 Tmnrar|

Purpose

The EDA style is a push-based communication between publishers
and consumers. It is used to communicate with a multitude of
consumers with minimum or no delay and avoid bottlenecks. It is a
style of application architecture that can be implemented in any

language, which can improve responsiveness via process parallelism,
throughput, and flexibility.

g_, |
=

W= | MScin ESS (EA)

Actors

[Euent Mediator B

[Event Listeners E

[Event Channel E

[Event =

=2 | wsciness ea) [

Actor: Event

A notification sent to a more or less well-known set of receivers
(consumers). Usually, the receivers of an event have to subscribe for
a certain type of event (sent by a certain system or component).
Depending on the programming or system model, the systems
sending the events (the providers) might or might not know and
agree to send the events to the subscribing receivers.

You can consider events as part of the publish/subscribe message
exchange pattern.

e MSc in ESS (EA)

Actor: Event Channel

An event channel is a mechanism whereby the information from an
event mediator is transferred to the event engine. This could be a
TCP/IP connection or any type of input file (flat, XML format, e-mail,
etc.).

Several event channels can be opened at the same time. Usually,
because the event processing engine has to process them in near real
time, the event channels will be read asynchronously

The events are stored in a queue, waiting to be processed later by the
event processing engine.

An event queue is a type of event channel. Event Queue transports an
event to the event mediator.

e MSc in ESS (EA)

Actor: Event Listener

Event Listeners act as asynchronous receivers, which automatically
receives messages as they're delivered on event channels. An event
mediator is a type of event listener. An event processor is a type of
event listener.

B

=2 | wmsciness(ea)

Actor: Event Mediator

2

Events are identified, and appropriate reaction are decided upon in
the Event Mediator engine. Reactions are executed from the Event
Mediator (i.e. orchestration of processing events to fire downstream
in parallel to multiple event processors, or in sequence). For example,
on reception of an initial event “product ID low in stock”, a mediator
will trigger processing events such as, “Order product ID” and “Notify
personnel”,

MSc in ESS (EA)

Event Chain Variant

Publisher

Asynchronous A
Ewvent Trigger

.

Initial Event

MSc in ESS (EA)

Event Chain :{)

Event
Channels *+ -

processon listens to

Ewvent Processors [(#)]

B e e e e

Application
Components

Event processors implement Processor component

the business logic. The orchestrates the sequence of

granularity of processor steps (or parallelism) by which
components varies. Processor Processing Events are fired to
components collaborate to downstream event channels to
perfarm an operation. accamplish a process.

Purpose

In this variant of the EDA architecture style is in fact the origins of
event-driven architecture. A cascading chain of events processed by
event processors implements the business logic of an application. In
this variation, there is not Event Mediator, and no Contract Interfaces
being managed. The flow isn't managed from a central location,
making it difficult to trace. Flow of data is choreographed as it
transits through processor components.

e MSc in ESS (EA)

Interactions

The only ways publishers can communicate with listeners is via
events.

The EDA architecture style is extremely loosely coupled because the
publisher doesn’t know the identity of the consumers.

There is no direct coupling between the publisher and the consumer
i.e. loosely coupled.

2

=2 | MScin ESS (EA)

Executability (Development, Testability) Il

Development no traceability of logic, chain of responsibility. Complexity can explode, contracts can
explode, requiring some external tooling to keep the event flow logic managed and under control
using BPEL, BPM platforms.

Assessment

Performance is high with parallel processing of many events possible in different processes.

Topology (Deployment / Allocation)

Deployment is fine grained.

Scalability

Allows for evolutionary design. Each event processor can reside on a dedicated server node.
Scalability is high as long as the granularity of processors is managed.

Maintainability / Flexibility (Ease of change, Coupling)

Mediator and Processors are highly decoupled from one another, can be deployed independently
from one another, can be changed without ripple effect on the overall architecture.
However, the same issues regardin g maintainability pertain to development and testability.

Availability / Reliability (Resilience, Failures recovery)

In case of failure, a log analysis must be performed to track down issues. Transactions cannot be
reversed across event processors. Re-initializing the application based on an EDA architectural style
may cause losses of transiting events, and event flow may not exactly resume from where it
stopped.

Securityll

From scratch.

Portability

Event Processors can be developed in different languages and leverage different technologies. This
is especially true for the Event Chain variant of the EDA architecture style. Event M ediators are often

£ MSc in ESS (EA) bundled as part of an EAI commercial platform.

Related

Related Patterns:
- Pipes & Filters
- Publish / Subscribe

Related Frameworks:
- Apache Camel

- Mule

- Oracle EDA Suite

- Apache ODE, |BPM

5

=2 | wmsciness(ea)

MicroServices Architecture

[Relatinns

[Assessment B

[nefinitiun

[Purpnse E

[Duen.riew

2 | mscinkss e

MicroServices Architecture

The Microservice Architecture style aims to partition the end-to-end
logic of an application in domains concepts each encapsulating all
layers of an application function (i.e. services, protocols, logic, data)
into collection of highly decoupled and independently deployable
units. The paradigm aims to build Evolutionary systems over time.

This style is born is born from experiencing the pros and cons of
previous generations of architectural styles, domain-driven design,
continuous delivery, on-demand virtualization, infrastructure
automation, small autonomous teams, systems at scale.

It emerged as a pattern from small teams building applications in
large organizations (born out of frustration and overkill) with desire
to own to re-appropriate to themselves full life-cycle of their services
to remain in control of systems complexity over time.

e MSc in ESS (EA)

What does it look like?

{ MScinESS (EA)

-

Application

Web Page real-estate

Web page, include RIA are
compositions of parts
sharing a "real-estate".

_o

AP| Facade

APl is just a facade, no
orchestration, no service
intelligence.

e.g. typically invoked by
Maobile client devices.

I ——

deployable unit that

A A
| |
<>l..*
Conftainer
Service Component @
Presentation Message
Broker or
S e An indepently

y Bounded
(Context

From the principles
of Domain Driven
Design.

e —

Domain

can be allocated on a

Data Source

Server node.

e —

Purpose

To isolate failure, design for failure.

To deploy independently, Eliminate the pains of deploying,
maintaining and testing.

To hide implementation details, Keep it simple, granular service
components that do one thing well with respect to their domain.
“Gather together those things that change for the same reason, and
separate those things that change for different reasons”.

To automate build and delivery

To scale, avoid introducing large and expensive enterprise message
bus, and make of scalability a developer concern before it becoming
a system administrator concern.

To decentralize governance, data governance, service governance.
Accept building evolutionary architectures over time is a possibility
(living system).

e MSc in ESS (EA)

Actor: Service Components

A service component implement the notion of Bounded Context from
Domain-Driven Design principles.

“No one outside of the bounded context knows what is inside”.
“You can connect to it via a service but it's a black box to you”.

The Service Components of a Microservice Architecture style ARE the
system.

2

=2 | MScin ESS (EA)

Variations

Variations of the Microservice integration style pertain to the style of
integration of service components from Clients and Consumers systems.

Service components can be access via REST or message or remote access
protocols.

Components are small, granularity doesn't matter.

Microservice uses choreography to allow service components to interact.
Unlike orchestration, choreography does not compose services to a new
service that has central control over the whole process. Instead, it defines
rules and policies that enable different services to collaborate to form a
business process. Each service involved in the process sees and contributes
only a part of it.

Message brokers can be embedded in service components to facilitate
distribution and decoupling. Doing so a service component can behave like
an event listener if needs be.

e MSc in ESS (EA)

Interactions

The architecture must first and foremost plan for the size (i.e. granularity) of
Service Components. The more components, the more transactions. The
bigger the components, the less transactions, but you loose the advantages
and move towards the monolithic architecture again.

Rules of interactions within a Microservice Architecture style are best
expressed in terms of what NOT to do.

Binding on the database schema is allowed and recommended (not data
abstraction layer). If the database schema changes, the service components
need to change and be redeployed transparently. Sharing databases kills the
purpose of the Microservice architectural style.

Avoid service dependencies between service component or there will be a
need to redeploy everything.

Avoid any form of orchestration dependencies between service components,
keep micro concepts or you will destroy the Pattern and run into real troubles.

e MSc in ESS (EA)

Assessment

Executability (Development, Testability)

Can become complex if the scope of Service Components increase beyond “micro” Service-to-
service components interactions must be managed and not become a substitute for Service
Orchestration. Contract maintenance can become difficult if left unmanaged or not version
controlled.

Regression testing can be scoped down to a reduced number of service components and immediate

clients/consumers that are re-deployed.

MSc in ESS (EA)

Performance

Remote protocols (like REST) as based on Web standards and as such can benefit from optimisation
techniques like caching.

Topology (Deployment / Allocation)

Increased uptime during deployment.

Scalability

Each deployable unit can be scaled individually. Granularity give options for scaling that monolithic
applications cannot provide.
Remote protocols (like REST) as based on Web standards and as such can benefit from load

balancingtechniques like caching.

Maintainability / Flexibility (Ease of change, Coupling)

Service Components are highly decoupled from one another, can be deployed independently from

one another, can be changed without ripple effect on the overall architecture.

Availability / Reliability (Resilience, Failures recovery)

In case of failure, a log analysis must be performed to track down issues. It is still early days but
activity monitoring and automated recovery are starting to emerge.

Security

Surface area of threats is increased by the multiplication of service components. Remote
connections must be secured. This style can leverage implementations for SAML, WS-I Security,
QAuth 2.x.

Web standards and Remote protocols are well understood from previous architecture styles,. The
Microservice Architecture Style doesn't introduce new protocols. Deployment containers are
extremely secure.

Portability

Service Components can be developed in different languages and leverage different technologjes.

Related

Related Patterns:
- Deferred to Service Components — a wide range of choices.

- Inherits many patterns from older architectural styles as long as
these do not violate the interaction rules of the Microservice

architecture style.

Related Frameworks:
- Axway for API Layer

5

=2 | wmsciness(ea)

Data-driven Styles

[Agile Data Processing Architecture

[Data Warehousing Architecture

2 msciness e

Datawarehousing Architecture

Transactional OLTP @@ Acquisition Layer ()] Integration Layer ()] Enterprise Layer
Layer
= A Data Stage area is used to compose data sets The quality of integrated - |Data is summarized and
that are pushed (or pulled from) the Transactional datasets in this layer is Data profiling, cleansing, Q presented according to specific
Data Layer. periodically monitored, reconciliation, controls subjects or areas of interest.
Also called the Staging Area, this stage is home controlled, verified q y
An Application data for comprehensive set of ETL processes ing.esting against data quality
store (ADS), stores the data. and ETL re-usable compaonents preparing policies (i.e. control Data Warehousing @ Publishing Layer @
raw detailed data data. rules, reconciliation
generated by the) -)) processes).)
Enterprise, or injected In this Area (named the "kitchen area’), data is Enterprize|DatalAzsets Operational Data &
in the Enterprise. prepared for downstream integration. Marts
Data stores in this layer are data processing
nodes ('cooking nodes’) - i.e. to clean / combine,s | | | N Metadata 1L RDEMS
prepare data. "
1
Operational @@ Data Assets
Application B] Databases
Datastores
Staging |
—— - Databases RDEMS —— Integrated Data Warehousing | Data Marts =]
RDEMS,
NoSQL, RDEMS |
RDEMS RDEMS
|
The aim of an ODS is to

integrate raw

transactional data and to
provide the most current R R R
values possible to its Archived Data Warehousing 2| Anaytical Marts =]

consumers.

Other Data
Sources

ETL
components

Enterprise ETL

Not a data warehouse Lake, RDEMS OLAP Cubes,
(because of the volatility Lake
Pull-based C"'f”""”‘ ETL of the data ws. historical
batch loads lagic snapshots), and because
of the narrower scope of
L L its operational needs.

I ——

i ! ! !
1
[— =
i Data Service Layer ™~
: Data Provisioning Companents
1
1 { X Data Extracts Data Data Feeds
v | Data Data Services Connectors
I'. Virtualization

MSc in ESS (EA)

Agile Data Processing Architecture

Enable cheap/easy data ingestion
Enable inexpensive scaling

. Emergent Design
Enable emergent design

. : . &
Enable easy recreation of information ' :
. . N _ Agile Delivery
Drive logic closer to the application DataFggléence
Enable near real time presentation ,
: Self-Service
Suppp_rt polyglot persistence — Bl
& \ . \ gl
Opa) atch ’ enter
Tran és NN ~» A<t .
Sactiong \ pvents AN Product
i ALY axonomy
Social Stry, \Core AN
Syndicated Ctur,) -
y ed Campaign
Video W, > N Performance
e Text \\‘}Q’* ¢
@ Post Processin
Q& :
/\/ N Information &
Publisher
Near Real Time \
Feed !
Transformation
Logic

MSc in ESS (EA)

Technology Influence

Technology Stacks E

=2 | wsciness e

Technology Stacks

Making patterns and Styles irrelevant: concluding remarks on ORM,
SQL, RIA/Flash.

Other discussion points:
- Technology force and the Pendulum effect
- Technology Debt and refactoring.

New Technologies are the best friend of IT Architecture.

Architects swing the momentum injected by NT to "re-think" and
"simplify" the TECHNICAL DEBT that crept in within the enterprise
over time.

5

=2 | wmsciness(ea)

Application Technologies (2005 / 2016)

2005 2016

Native
Desktop ios Native
Browser Android Responsive
Javascript: Web on Tablet
20+ Frameworks
JSON
One-Page [l JSON, HTML, S
JavaScript CSSJS "ISON, HTML,
Backend for CsS,Js
Frontend
Desktop
Browser
cript: JQ
Microservice
HTML Css,Js NET

ISQL
>,

\- i
Bulk Load

Event Stream

Mltrosnft

Reporting
Services

Hadoop-based

Data Lake
Tral nsf:)r'm/

Machine
Learning Predictive
Modeling

Customer
Insights

M in £55 €A

Data Technologies (2016 - 2025)

GlEmbep ¢,

- 7~ 1) Neo4j
b i er_/ Kf y

_—"Information
Publisher

Apache Storm

g Apache Kafka

&2 | Mmscinkss (ea) [DEEE|

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110

