
MSc in ESS (EA)

WIT 2016 ITA Module

Architecture Principles
Lecture Group #3 - Part 1

MSc in ESS (EA)

Lecture Group #3 - Part 1
Architecture Principles

MSc in ESS (EA)

Prescriptive Heuristics

A heuristic technique, often called “heuristic”, is any approach to problem
solving, learning, or discovery that employs a practical method not
guaranteed to be optimal or perfect, but sufficient for the immediate goals.
Heuristic are used to speed up the process of finding a satisfactory solution.
Heuristics can be mental shortcuts that ease the cognitive load of making a
decision.

Architectural Styles and Patterns are heuristics for treating complex,
unbounded problems. Architecture Styles and Patterns are abstractions of
experience that help the transition from descriptive (problem space) to
prescriptive (normative, solution space) - i.e. provide a bridge between
concept and implementation, synthesis and design, system to subsystem
thinking.

Styles and Patterns are codified, succinct expressions from lessons learned
through community experience. It is a key modeling and learning technique
for designers architects.

MSc in ESS (EA)

"Patterns of Play"

A Chess Master does not think all possible moves ahead, they see a
"pattern of play" or "pattern of positions" and add insight and
experience to know a probable outcome.

An architect judges of the eligibility of a candidate Architectural Style
from the environmental constraints, and the principles and
guidelines that support the application of the Style.

An Architect is good at selecting a Style by matching desired intrinsic
design attributes to desired quality properties of the architecture,
and figuring out from ASPECTS that are relevant from details that are
irrelevant.

MSc in ESS (EA)

“Patterns of Play”

MSc in ESS (EA)

Qualitative Design Attributes

Coherence, Cohesion and Consistency are three fundamental design attributes
of any system. These attributes are implicitly enforced in architecture styles.

An architecture style has a predictable form and way of functioning, at all
levels throughout the design, helping reviewers to know what to expect
without necessarily having to delve into the documentation, or reverse
engineer design from code.

MSc in ESS (EA)

Coherence

Coherence is about FORM.
Within a coherent architecture, elements are organized and ordered in a logical
structure according to their relationship to one another.
Coherence brings a visible pattern of organization in the structure of elements
working together to form PARTS of a bigger whole.

- Smaller, granular parts, are more generic and re-usable (down to common
technical building blocks or elements with a specific utilitarian focus).
- Bigger, coarse-grain parts, are more specific to a bounded context of use
(aggregation of building blocks in a domain model, or coordination of use case
flows for example).

Coherence is visible in the modeling of compositions and dependencies between
elements.
A coherent design is easier to understand and easier to build.
A coherent component or system is easier to extend.

MSc in ESS (EA)

Cohesion

Cohesion is about FUNCTION.
It is about making sure each component does one thing and does it well, avoiding
overlap of concerns and duplication of functionality.
Within a cohesive architecture, elements are brought together (and given authority
to) to perform a set of operations realizing a defined (bounded) function.

- Example of high component cohesion: A customer maintenance component
implementing CRUD operations on Customer data entities, and notifying about
changes pertaining to customer details.
- Example of low component cohesion: Same as above but overloaded with CRUD
operations on order/purchases performed by a customer, but that have nothing to
do with customer maintenance.
- A component exhibits high cohesion when all its functions/methods are strongly
related in terms of function.

A cohesive design is easier to figure-out and simulate.
A cohesive component or system is easier to debug and test.

MSc in ESS (EA)

Consistency

Consistency is about INTERACTION MECHANISMS.
Within a consistent architecture, mechanisms for information exchange between
elements are of a similar nature.
There is a visible pattern in the way elements interact.

The same set of interaction mechanisms is applied consistently throughout the
architecture.
- A set of defined contract interfaces governs the outputs and inputs of
interacting elements.
- A set of defined policies govern the way by which elements communicate with
each other.

Consistency is visible in the modeling of element conversations and means of
data exchange.
A consistently designed and implemented system is much easier to build, test,
operate, and evolve.

MSc in ESS (EA)

Measurable Aspects

In Software, components are units of delivery that can be independently
replaced and upgraded. This is a remarkable feature of software architecture,
which constitutes a fundamental principle which must not be broken.
All measurable aspects of Coherence, Cohesion and Consistency pertain to this
principle.
Measurable aspects are comparable to the symptom of a sick patient. For
example, being forced to redeploy an entire set of system in a 3 days long
integrated release because a minor change in the system needs to be deployed.

MSc in ESS (EA)

Degree of Coupling of an architecture

Measures of Coupling:
- % of components that can be deployed independently without
impacting other components
- % of component that can change without affecting other already
deployed components

MSc in ESS (EA)

Aspects of high coupling

In a tightly-coupled (highly-coupled) architecture, each component and its
associated components must be present in order for code to be deployed.

Examples:
1 component relies on the inner workings of another component
2 components share the same global data (via an in-memory global
variable)
1 component controls the flow of another component, by passing data on
what to do (the more control parameters causing the target component to
take a different action/path, the tighter is the binding)
2 modules are tied together into one module because of a timing
dependency

Any situation of bi-directional or circular dependencies withing the code of
an application i.e library dependencies are valid examples of tight-coupling.

MSc in ESS (EA)

Aspects of low coupling

In a decoupled (loosely coupled, or weakly coupled) architecture, a change in one
component never (or rarely) necessitate a change in the others.

For example, components can operate completely separately and independently
using services running in separated processes, and communicating with networking
mechanisms such as HTTP. Doing so, each components can remain autonomous
and let middleware software to manage communication between them.

Examples:
- 2 component share data through parameters. Each piece of data is elementary,
what the target strictly needs to function, and the only shared data.
- 2 components share a composite data structure and use only a part of it, possibly
a different part
- 2 component are bound together via a shared data context (data store, database)
- 2 modules collaborate but are neither tied nor bundled together into one
deployable unit, or process.

MSc in ESS (EA)

Informs/Impacts

Coupling measures & metrics inform about the Cohesion and Coherence of an
architecture.

Example of Low coupling impact:
- Performance : Communicating between certain types of element can be
more an order of magnitude more expensive in terms of processing time and
elapsed time. Loosely coupled systems are often easier to build, support and
enhance but may suffer from poor efficiency compared with a monolithic
approach.

Example of High coupling impacts:
- Performance : Function calls in same process, less interdependency, less
coordination, less information flow.
- Maintainability : Changes changes cause ripple effect within the code.
- Scalability : Force a “big-bang” monolithic component deployment every
time a change is introduced in the application.

MSc in ESS (EA)

Useful Design Principles

MSc in ESS (EA)

Single Responsibility principle

Each component or module should be responsible for only a specific
feature or functionality, or aggregation of cohesive functionality.
You should only need to specify intent in one place.
Specific functionality should be implemented in only one component;
the functionality should not be duplicated in any other component.

MSc in ESS (EA)

Separation of Concerns principle

Break your application into distinct features that overlap in
functionality as little as possible.
The main benefit of this approach is that a feature or functionality
can be optimized independently of other features or functionality.
If one feature fails, it will not cause other features to fail as well, and
they can run independently of one another.
This approach also helps to make the application easier to
understand and design, and facilitates management of complex
interdependent systems.

MSc in ESS (EA)

Black box principle

A component should not know about internal details of other
components.
A component or an object should not rely on internal details of other
components or objects.
Each component or object should call a method of another object or
component, and that method should have information about how to
process the request and, if appropriate, how to route it to
appropriate subcomponents or other components.
This helps to create an application that is more maintainable and
adaptable.

MSc in ESS (EA)

Degree of Interdependency of an architecture

Measures of Interdependency:
- % point-to-point connections between components of an
architecture
- % of components dependent of another component to achieve its
intent
- % of components required to perform the complete scope of an
operation
- % of components going over a threshold of size, conciseness

MSc in ESS (EA)

Informs/Impacts

Interdependency measures & metrics inform about the Coherence of
an architecture.

Examples of High interdependency impacts:
- Reliability : Reduce brittleness of an application since operations
an operation within a same element / process.
- Maintainability : Changes in the component interface require
changes to already implemented and deployed components.

MSc in ESS (EA)

Useful Design Principles

MSc in ESS (EA)

Composition over inheritance principle

Use composition over inheritance when reusing functionality.
Inheritance increases the dependency between parent and child
classes, thereby limiting the reuse of child classes.
This also reduces the inheritance hierarchies, which can become very
difficult to deal with.

MSc in ESS (EA)

Avoid functionality overload principle

A UI processing component should not contain data access code or
attempt to provide additional functionality.
Overloaded components often have many functions and properties
providing business functionality mixed with crosscutting functionality
such as logging and exception handling.
The result is a design that is very error prone and difficult to
maintain.

MSc in ESS (EA)

Components type consistency principle

Start by identifying different areas of concern, and then group
components associated with each area of concern into logical layers.
For example, a UI layer should not contain business processing
components, but instead should contain components used to handle
user input and process user requests.

MSc in ESS (EA)

Abstract crosscutting code principle

Keep crosscutting code abstracted from the application business logic
as far as possible. Crosscutting code refers to code related to
security, communications, or operational management such as
logging and instrumentation. Mixing the code that implements these
functions with the business logic can lead to a design that is difficult
to extend and maintain.

MSc in ESS (EA)

Cost of operation principle

Consider the operation of your application. Determine what metrics
and operational data are required by the IT infrastructure to ensure
the efficient deployment and operation of your application. Designing
your application’s components and sub-systems with a clear
understanding of their individual operational requirements will
significantly ease overall deployment and operation.

MSc in ESS (EA)

Degree of Interoperability of an architecture

Measures of interoperability:
- % of components dedicated to communicate/exchange data with
other components (e.g. by means of service facade)
- % of components that use the information that has been (or to be)
exchanged (e.g. marshalling, un-marshalling)
- % of processing logic of 1 component involving interaction with
other components

MSc in ESS (EA)

Informs/Impacts

Interoperability measures & metrics inform about Cohesion and
Consistency.

Examples of High interoperability impacts:
- Maintainability : Extensibility points in the architecture allow the
system to perform new functions in the future.
- Performance : Chatty-ness between components over the network
is increased
- Reliability : Brittleness of whole system is increased, less fault
tolerant, difficult to find the source of a problem, or where a problem
can occur
- Reliability : Teams may make wrong assumptions about the
behavior of collaborating components they didn't develop
- Security : The surface area of the architecture is increased for each
service provided, multiplying angles of attack.

MSc in ESS (EA)

Useful Principles Principles

MSc in ESS (EA)

Data format consistency principle

Keep the data format consistent within a layer or component. Mixing
data formats will make the application more difficult to implement,
extend, and maintain. Every time you need to convert data from one
format to another, you are required to implement translation code to
perform the operation and incur a processing overhead.

MSc in ESS (EA)

Layers communication principle

Be explicit about how layers communicate with each other. Allowing
every layer in an application to communicate with or have
dependencies upon all of the other layers will result in a solution that
is more challenging to understand and manage. Make explicit
decisions about the dependencies between layers and the data flow
between them.

Understand how components will communicate with each other. This
requires an understanding of the deployment scenarios your
application must support. You must determine if all components will
run within the same process, or if communication across physical or
process boundaries must be supported—perhaps by implementing
message-based interfaces.

MSc in ESS (EA)

Clear contract principle

Define a clear contract for components. Components, modules, and
functions should define a contract or interface specification that
describes their usage and behavior clearly. The contract should
describe how other components can access the internal functionality
of the component, module, or function; and the behavior of that
functionality in terms of pre-conditions, post-conditions, side effects,
exceptions, performance characteristics, and other factors.

MSc in ESS (EA)

Useful Design Activities

Generalizing: Are the mechanisms of the architecture and decisions made
general enough as they are also practicable?
Partitioning: To what extent each internal element is responsible for a
distinct part of the system’s operation? To what extent is common
processing performed in only one place?
Structuring: Is a visible structure of groupings, packages for component
emerging from your architecture?
Composing: How are components combined a coarse-grained level? What
are the rules of composition of your design?
Decomposing: How are components breaking down the design into several
smaller and re-usable entities?
Abstracting: Is your architecture hiding detail to isolate the coarse-grained
parts from underpinning infrastructure elements?
Interfacing: What are the types of connectors available in your architecture
to connect or integrate components? Are these connectivity mechanisms
sufficient in terms of speed?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

