
MSc in ESS (EA)

WIT 2016 ITA Module

Architecture Patterns
Lecture Group #3 - Part 3

MSc in ESS (EA)

Lecture Group #3 - Part 3
Architecture Patterns

MSc in ESS (EA)

About this Lecture

MSc in ESS (EA)

Patterns in Context

The list of architecture patterns presented in this Lecture pertain to
remote interactions/collaborations between distributed components.
Architecture Patterns that pertain to intra-communications WITHIN a
same component and do not involve distributed components are not
the focus of this Lecture.

MSc in ESS (EA)

Conversation Policies

MSc in ESS (EA)

Purpose

An architect must define the CONVERSATION POLICY of an
architecture BEFORE choosing the technologies, protocols, delivery
mechanisms, types of components of an architecture.
The design of conversations is often overlooked by technical
designers and developers to the profit of a choice of technology or
framework. Architects have a responsibility to take a step back and
state conversations policies between types of components
independently from implementation choices.

MSc in ESS (EA)

What is a conversation?

Discussion Point: Considering a given set of E-mail exchanges
happening between a set of team members sharing a same objective.
- What is the "Command and Control" people management
paradigm?
- What is the "Delegation and Empowerment" people management
paradigm?
What are the pros/cons of each of these paradigms?

MSc in ESS (EA)

Definition

A conversation policy is a directed exchange of related messages
synchronously or asynchronously, over time, between distributed
components.
A conversation policy defines what happens between communicating
parties — that is, who is allowed (or expected) to send messages to
whom, where, why and in what order.

MSc in ESS (EA)

Orchestration Overview

MSc in ESS (EA)

Paradigm

Orchestration is independent from the choice of RPC communication protocols or
methods of MESSAGE delivery between distributed components.

It is a conversation paradigm, and can be implement in many different ways.

Using Message-Oriented patterns, when messages are always transiting through a
centralized component before deciding of a next step in logic, it is a form of
orchestration.
Using Service-Oriented patterns, when operations implementing a sequential logic
flow are invoked from a centralized component, it is a form of orchestration.
As long as the RESPONSIBILITY for the sequencing of steps is CENTRALIZED in a
dedicated component: it is a form orchestration.
Whether the decision of next step in sequence is performed statically, based on a
planned route, or dynamically, based on the contents of messages exchanged; as
long as the orchestration is centralized, it is a form of orchestration.
The conversation is always centralized.

MSc in ESS (EA)

Example

On reception of a Message, the current CONVERSATION STATE is
recovered from a set of correlation identifiers, and used to determine
the next CONVERSATION ROUTE (i.e. and execute the next step by
sending a follow-on Message the next component).

Relevant standard: WS-BPEL

MSc in ESS (EA)

Choreography Overview

MSc in ESS (EA)

Examples

Choreography is is a ALSO conversation paradigm, but can only be
implement using Message-Oriented patterns.

Messages transferred between distributed components contain all
the information required for the target component to decide on what
next step in logic to execute.
When operations are dynamically chained, based on the analysis of
the contents of a message, it is a form of choreography.

As long as the RESPONSIBILITY of deciding about next steps is
DEFERRED to the next component in the chain of events: it is a form
orchestration. The conversation is decentralized.

Relevant standards: REST HATEOS, WS-CDL

MSc in ESS (EA)

Examples of Policy Attributes

MSc in ESS (EA)

For Messages

A policy defining, for example:
- Message exchanged as Document / Literal
- Message exchanged as Command
- Message containing an Metadata Header
- Message containing a trace of routes
(...)

MSc in ESS (EA)

For Message Routing

A policy defining, for example:
- Routing rules

- Based on a predefined logic
sequence
- Based on conversation state
- Based on message contents

- Multi-cast / broadcast
- Many service calls
performed in parallel on
different target component
endpoints
- Many messages broadcasted
simultaneously on different
transport channels

A policy defining, for example:

- One way

- A simple notification

- A simple invocation

- Two-way communication

- Synchronous Request /
response

- Request / eventual
response (asynchronous)

MSc in ESS (EA)

For Message Transport

A policy defining, for example:
- Synchronous RPC / Message exchanges
- Asynchronous Message Exchanges

A policy defining, for example:
- Queue-based message communications
- Event-based message communications

A policy defining, for example:
- If the location of queues should be known and managed by calling
components

MSc in ESS (EA)

For Conversational State

A policy defining, for example:
- If the list of necessary conditions to commit a transaction are met
- If the list of necessary conditions to rollback a transaction are met

A policy defining, for example, the nature of the conditions
themselves:
- Based on the list of steps previously successfully executed, what
should be the next step?
- Acknowledgement of delivery within a given time-window
- Number of retries performed within a given time-window

(...)

MSc in ESS (EA)

Messaging Patterns

MSc in ESS (EA)

Command Query Responsibility Segregation
(CQRS) pattern

MSc in ESS (EA)

Context

Need to invoke functionality provided by other applications, not using
Remote Procedure Invocation nut Messages, to meet fault-tolerance
(reliability) requirements and interoperability/extensibility
requirements.

MSc in ESS (EA)

Problem

How can a Message-Oriented architecture be used to invoke a
procedure in another application?

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Solution

Use a Command Message to reliably invoke an operation from
another component.
This pattern states that every operation should either be a command
that performs an action, or a query result that returns data to the
caller, but not both.
Beyond these two distinction there is no specific message type for
commands defined in the pattern; a Command Message is simply a
regular message that happens to contain a command.
However, command–query separation is particularly well suited to a
design by contract methodology, so to define specific types of
commands and queries.
Command–query separation allows to retrace the commands
exchanges between components overtime and as such is useful to
determine the conversational state of an application.

MSc in ESS (EA)

Remarks

The CQRS pattern has a simplifying effect on long-running, rich
conversations between distributed components, making its states (via
queries) and state changes (via commands) more comprehensible.
Implemented using queues the pattern makes great of use of
reliable/guaranteed message delivery, improving the reliability of an
architecture.

MSc in ESS (EA)

Document Message / Transfer Object pattern

MSc in ESS (EA)

Context

Application A required to perform a high number of RPC to
Application B to execute its logic. All of these remote calls are costly,
partly because of the amount of data marshalled/un-marshalled with
each call.
Data currency (i.e. timeliness of the data exchanged is a concern)
therefore ruling out file-transfer or shared database patterns.

MSc in ESS (EA)

Problem

How can messaging be used to optimized the conversation between 2
components? Is there a way to avoid having to serialize / de-serialize
multiple argument calls?

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Solution

Create a Document Message (also referred as Data Transfer Object)
that can hold all the data pertaining to the RPC.
Use a synchronous Document/Literal Web Service, or an
asynchronous Document Message channel to reliably transfer a data
structure between application components.

MSc in ESS (EA)

Remarks

The Document Message is a single unit of data, a single object or data
structure conforming to a Schema definition.
Whereas a Command Message tells the receiver to invoke certain
behavior, a Document Message just passes data and lets the receiver
decide what, if anything, to do with the data.

MSc in ESS (EA)

File Transfer pattern

MSc in ESS (EA)

Context

An enterprise has multiple LEGACY applications that are being built
independently, with different languages and platforms.
These application need to exchange information. These legacy
applications do not have RPC capabilities (no interfaces endpoints to
invoke).

MSc in ESS (EA)

Problem

How do you integrate information systems that were not designed to
work together?
How do you integrate multiple applications so that they work
together and can exchange information?

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Solution

Integrate applications at the logical data layer. Have each application
produce structured (flat, XML or other) extract files containing
information that other applications can to consume.
Make each application produce files that contain the information that
the other applications must consume.
Produce the files at regular intervals according to the nature of the
business. After a file is created, do not maintain the file.

MSc in ESS (EA)

Remarks

An important decision with files is what format to use.
Very rarely will the output of one application be exactly what is
needed for another.
Extract will require transformation down the line by downstream
consumers.
Extract can follow a ISO (or other industry-specific) standard file
format. Mainframe systems commonly extract VSAM files.

MSc in ESS (EA)

Message Translator pattern

MSc in ESS (EA)

Context

Need for a mechanism for converting a message payload from one
representation to another as it flows through the messaging system.
Enterprise integration solutions route messages between existing
applications such as legacy systems, packaged applications, homegrown
custom applications, or applications operated by external partners.
Each of these applications is usually built around a proprietary data
model. Each application may have a slightly different notion of the
Customer entity.
The application’s underlying data model usually drives the design of the
physical database schema, an interface file format or a programming
interface (API) -- those entities that an integration solution has to
interface with. As a result, the applications expect to receive messages
that mimic the application's internal data format.
Need to conform to data exchange standard body (ebXML, EDIFACT,
ACORD).

MSc in ESS (EA)

Problem

How can systems using different data formats communicate with
each other using messaging?
Heterogeneous systems integration (legacy, in-house, and vendor
provided)
may use different message representation for input or output.

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Solution

Use a filter, referred as Message Translator to translate one data
format into another, following data mapping specifications/rules.
Provide a system-independent mechanism for altering the message
payload and metadata (envelope) prior to delivery to an application
endpoint.

MSc in ESS (EA)

Remarks

The Message Translator is the messaging equivalent of the Adapter
pattern described in GoF. An adapter converts the interface of a
component into a another interface so it can be used in a different
context.
Translators are one of the most effective message transformation
mechanisms because they allow application developers and
integrators to insulate, implement, test, and maintain these system
components without modifying existing application workflow or
domain/application logic.

MSc in ESS (EA)

Pipes and Filters pattern

MSc in ESS (EA)

Context

Many systems are required to transform streams of discrete data
items, from input to output.
Need to implement flexible message processing between systems in
a platform-independent manner and without introducing system
dependencies or unnecessary coupling.
Need for a conduit that extracts data from a message, applies a
transformation function to it as it flows between consumers and
services.
Need for the integration solution to apply several transformations to
the messages that are exchanged by its participants.

MSc in ESS (EA)

Problem

How do you implement a sequence of transformations so that you
can combine and reuse them independently?
How to create a data transformation process generic and loosely
coupled, so its parts can be re-used and executed in parallel, and be
flexibly combined with each other?

MSc in ESS (EA)

Overview

•

MSc in ESS (EA)

Solution

Implement the transformations by using a sequence of filter
components, where each filter component receives an input
message, applies a simple transformation, and sends the
transformed message to the next component.
Conduct the messages through pipes that connect filter outputs and
inputs and that buffer the communication between the filters.
The pattern of interaction in the pipe and filter pattern is
characterized by successive transformations, of streams of data.
Data arrives at a filter input port, is transformed, and then passed via
its output ports through a pipe to the next filter. A single filter can
consume data from, or produce data to, one or more ports.
Filters order are interchangeable that enable different work flow
functionality without changing the filters themselves.

MSc in ESS (EA)

Remarks

Must share the same external interface to facilitate integration and
recombination. The point of the pipe & filters pattern eliminate data
and dependencies by uniform defining a contract (inbound/outbound
interface) that encourages reusability through composition.
Uses discrete functions on messages like encryption, data
consolidation, redundancy elimination, data validation, etc.
Filters split larger processing tasks into discrete, easy to manage units
that can be recombined for use by multiple service providers.

MSc in ESS (EA)

Message Dispatcher pattern

MSc in ESS (EA)

Context

Need for a general mechanism for dispatching a number of messages
to one or more destinations, in no particular order, based on
configurable rules or filters applied to message payloads.

MSc in ESS (EA)

Problem

How can multiple consumers on a single channel coordinate their
message processing?
An application must connect with one or more application endpoints
without coupling itself with any of them.

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Solution

Create a Message Dispatcher on a channel that will consume
messages from a channel and distribute them to performers.
Use a conduit that allows configurable delivery rules based on the
message payload, data filters, or content type.
Routing may be sequential (endpoints receive the payload one after
another) or in parallel (all endpoints receive the payload at virtually
the same time).

MSc in ESS (EA)

Remarks

The router abstraction is in use in all modern SOA systems in some
forms, whether available in queuing or bus-based systems out of the
box, or implemented in custom-made applications and message
delivery systems because they provide an elegant and simple
mechanism for system independent
message delivery.

MSc in ESS (EA)

Message Router pattern

MSc in ESS (EA)

Context

Routing messages through a distributed system based on filtering
rules
is inefficient because messages are sent to every destination’s filter
and
router for inspection and rules resolution, whether the message
could be
processed or not.
Need for an efficient mechanism for dispatching messages to one or
more
destinations based on configurable, non-filtering rules applied to
the message payload.

MSc in ESS (EA)

Problem

How can you decouple individual processing steps so that messages
can be passed to different filters depending on a set of conditions?
Message dispatching based on application-specific data elements
such as customer attributes, message type, etc.
You need to know the network address of the other side.

MSc in ESS (EA)

Overview

•

MSc in ESS (EA)

Solution

Define a message router that includes both filtering rules and
knowledge about the processing destination paths so that messages
are delivered only to the processing endpoints that can act upon
them.

Unlike filters, message routers do not modify the message content
and are only concerned with message destination.

Insert a special filter, a Message Router, which consumes a Message
from one Message Channel and republishes it to a different Message
Channel channel depending on a set of conditions.

MSc in ESS (EA)

Remarks

Better overall message delivery and processing performance at the cost of
increased delivery system complexity since the router must implement
both knowledge of the destinations and heuristic, arbitrary rules.

This pattern is excellent for decoupling applications by removing routing
information from discrete systems.
The Message Router differs from the most basic notion of Pipes and Filters
in that it connects to multiple output channels.
Thanks to the Pipes and Filters architecture the components surrounding
the Message Router are completely unaware of the existence of a Message
Router.

This pattern adopts the mindset that all messages are distributed, and
thus subject to failure on the network. In the future era of cloud
computing, that’s probably going to end up being true for all solutions.

MSc in ESS (EA)

Synchronous Point to Point Processing pattern

MSc in ESS (EA)

Context

Need for a variable amount of distributed components of a same
type to consume messages originating from a same producer, with a
view to maximize performance.

MSc in ESS (EA)

Problem

How to maximize the use of distributed components processing
messages in parallel?
How can the caller be sure that exactly one receiver will receive the
document or perform the call?

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Solution

Send the message on a Point-to-Point Channel, which ensures that
only one receiver will receive a particular message.
A Point-to-Point Channel ensures that only one receiver consumes
any given message.
If the channel has multiple receivers, only one of them can
successfully consume a particular message.

MSc in ESS (EA)

Remarks

If multiple receivers try to consume a single message, the channel
ensures that only one of them succeeds, so the receivers do not have
to coordinate with each other.
The channel can still have multiple receivers to consume multiple
messages concurrently, but only a single receiver consumes any one
message.

MSc in ESS (EA)

Asynchronous Queue Processing pattern

MSc in ESS (EA)

Context

Need for a mechanism for queuing messages between one or more
distributed component endpoints to decouple processing time and
resources for each stage of a processing work flow.

MSc in ESS (EA)

Problem

How to increase reliability of messages exchanged between
distributed components?
How to guarantee that messages have been delivered so to certify
that the exchanges meet the conversation policy specified the by
architecture?

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Solution

Consumers exchange messages with the services through a
processing queue that decouples front-end (message capture) from
the back-end (processing); messages arrive into the queue at a rate
different from that of processing.
Sending a message does not require both systems to be up and ready
at the same time.
A single message will be received by exactly one consumer. If there
are no consumers available at the time the message is sent it will be
kept until a consumer is available that can process the message.
If a consumer receives a message and does not acknowledge it
before closing then the message will be redelivered to another
consumer.

MSc in ESS (EA)

Remarks

The Asynchronous Processing Queue Processing pattern suited for
applications that require scalability of the front-end (e-commerce)
and back-end (such as mainframe data consolidation).
Processing queues are well-understood and scale horizontally or
vertically, depending on the application requirements.
A number of solid open-source and commercial and several
reference implementations exist, based on standardized API.

MSc in ESS (EA)

Publish Subscribe pattern

MSc in ESS (EA)

Context

Need for a mechanism allowing routing messages to consumers in
response to specific events or triggers.
Consumers must process messages as they become available in a
system.

MSc in ESS (EA)

Problem

How can a sender component broadcast an event or message to a
finite and configurable set interested receiver components?
How can an application in an integration architecture only send
messages to the applications that are interested in receiving the
messages without knowing the identities of the receivers?

MSc in ESS (EA)

Overview

•

MSc in ESS (EA)

Solution

Send the event on a Publish-Subscribe Channel, which delivers a copy
of a particular event to each subscribed receiver.
A Publish-Subscribe channel has one input channel that splits into
multiple output channels, one for each subscriber.

When an event is published into the channel, the Publish-Subscribe
Channel delivers a copy of the message to each of the output
channels.
Each output channel has only one subscriber, which is only allowed
to consume a message once. In this way, each subscriber only gets
the message once and consumed copies disappear from their
channels.
Enable listening applications to subscribe to specific messages.

MSc in ESS (EA)

Remarks

There are three variations of Topics for creating a mechanism that
sends messages to all interested subscribers.
- List-Based Publish/Subscribe
- Broadcast-Based Publish/Subscribe
- and Content-Based Publish/Subscribe

The conversation policy of an architecture can be refactored by
dynamically inserting new Topics.

Examples: JMS, Kafka

MSc in ESS (EA)

Message Bus pattern

MSc in ESS (EA)

Context

Need to integrate applications that are provided by different vendors
and communicate via different communication protocols /proprietary
formants.
These applications run on a variety of platforms. Some of these
applications generate messages and many other applications
consume the messages.
Architecture requires required integration of heterogeneous systems
legacy and new system interoperability, protocol abstraction.

MSc in ESS (EA)

Problem

How can I integrate multiple applications so that they work together
and can exchange information?
As an integration solution grows, how can you lower the cost of
rationalizing (modernizing, adding or removing) applications?

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Solution

Connect all applications through a logical component known as a
message bus. A Service Bus specializes in transporting messages
between applications.
A Service Bus uses Messaging to transfer packets of data frequently,
immediately, reliably, and synchronously, using customizable
formats.
A bus contains three key elements: a set of agreed-upon message
schemas; a set of common command messages, and a shared
infrastructure for sending bus messages to recipients.
It provide a data- or protocol-neutral conduit with abstract entry and
exit points for interconnecting applications independently of their
underlying technology.

MSc in ESS (EA)

Remarks

Thinking about the communication in an asynchronous manner invite
architects to recognize that working with a remote application is
slower, which encourages design of components with high cohesion
(lots of work locally) and low adhesion (selective work remotely).
Message Bus platforms consolidate all Messaging patterns. These
platforms is a pragmatic reaction to the problems of distributed
systems.

MSc in ESS (EA)

Service Patterns

MSc in ESS (EA)

Remote Procedure Invocation pattern

MSc in ESS (EA)

Context

An enterprise has multiple applications that are being built
independently, with different languages and platforms.
Need to share data and processes in a synchronous, timely way.

MSc in ESS (EA)

Problem

How can I integrate multiple applications so that they work together
and can exchange information?

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Solution

Develop each application as a large-scale component with
encapsulated behavior + data.
Provide a service and contract interface to allow other applications to
interact with the running application.
Typically functions are invoked via a Web Service using Service-
oriented model (SOAP/RPC) or a Resource-oriented model (WS-
Literal).

MSc in ESS (EA)

Remarks

Remote Procedure Invocation applies the principle of encapsulation to
integrating applications.
If one application needs to acquire the data, or modify the data of another
application, then it does so by making a direct call to the other application.
Each application maintains the integrity of the data it owns. Furthermore,
each application can alter its internal data without having every other
application be affected.
Distributed Object Integration is also known as instance-based
collaboration because it extends the model of object-oriented computing
to distributed solutions.
This type of synchronous interaction usually seems natural to architects,
but it can result in a complex and tightly-coupled interaction model
between the components.
Too often it is assumed that distributed component are up-and-running
24/7, instead of for failure by design.

MSc in ESS (EA)

Concurrent Contract Provider pattern

MSc in ESS (EA)

Context

Need for defining a method of centralizing sharing schemas across
application boundaries to avoid having to manage redundant service
definitions at risk of become out of date.
Need for a method allowing multiple applications with different
versions of a same contract type to simultaneously consume the
same service.

MSc in ESS (EA)

Problem

Similar data sets must be processed by services or applications with
different capabilities, resulting in unwieldy service contracts or data
schemas.
One unique version of a same service contract endpoint may not be
suitable for all potential consumers, extensibility of is a key
requirement.

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Solution

Centralize Define data schemas as entities in a persistent Contract
Repository which is separated from the distributed components.
Any contract-first architecture, regardless of implementation
technology (JMS, SOAP, other) in which more than one system will
transmit, transform,
process, or store data can use the Contract Provider component to
obtain the appropriate version of a contract, function of the target
destination.

MSc in ESS (EA)

Remarks

Multiple contracts may exist for the same service, each with a
different level of abstraction than the others in the same group, to fit
corresponding
service level agreements or to accommodate legacy systems.
Contract definitions can be persisted on a file system or in a
document-oriented data store. Caching is an option to make requests
to data contracts as efficient as possible.
In complex implementations of this pattern, contracts can be
generated on-demand based on an underpinning rules database.

MSc in ESS (EA)

Service Broker pattern

MSc in ESS (EA)

Context

Instead of being built from scratch, Application A needs to be build
from a collection of existing services distributed across multiple
servers.
Implementing Application A is complex because of the difficulties in
getting existing systems to interoperate - how they will connect to
each and how they will exchange information - as well as the
availability of their component services.

MSc in ESS (EA)

Problem

How can you decouple the destination of a message from the sender
and maintain central control over the flow of messages?
How do you integrate applications without enforcing a common
interface and also allow each application to initiate interactions with
several other applications?
How do you structure& chains distributed components to form a
cohesive application logic, without having to worry about the nature
and location of service providers, making it easy to dynamically
change the bindings/dependencies over time?

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Solution

Integrate the composite services provided by distributed application
using Message Broker pattern.
A message broker is a physical component that handles the
communication between applications.
The Message Broker pattern separates the consumer of services
(clients) from the provider of services (servers) by inserting an
intermediary, commonly referred as a Broker.
Instead of communicating with each other, applications
communicate only with the message broker.

MSc in ESS (EA)

Remarks

When a client needs a service, it queries a Broker via a service
interface. The Broker then forwards the client service request to the
eligible target server that must process the request.
An application sends a message to a Message Broker and specifies
the the logical name of the receivers.
The message broker looks up applications that are registered under
the logical name and then passes (i.e. re-route) the Message to them.

MSc in ESS (EA)

Service Wrapper pattern

MSc in ESS (EA)

Context

Need for Encapsulate a legacy service API inside a generic, modern
stateless service exposed to distributed applications.

MSc in ESS (EA)

Problem

Legacy systems may offer limited service capabilities, or their only
interface with other applications may be through file data exchanges
only.

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Solution

Wrap the inter-operation mechanisms within a service facade that
operates with the legacy system and exposes a normalized SOA
interface to new consumers.

MSc in ESS (EA)

Remarks

Also referred as Service Interface pattern. The Service Wrapper
pattern is often implemented as a read-only capability.

MSc in ESS (EA)

Compensation Transaction pattern

•

MSc in ESS (EA)

Context

Distributed components inevitably increase the chances of failure in
an architecture.
Two or more processes, each accessed via a service, possibly running
concurrently across multiple systems, need to complete successfully
for the overall transaction to succeed.
If one (or more) of the related services fail, all the services associated
with it and the application response must roll-back to their previous
state for maximum application integrity.
Need for a mechanism to coordinate multiple run-time activities
which together comprise a single holistic service, with guaranteed
completion or roll-back capability.

MSc in ESS (EA)

Problem

Classic Atomic Transaction (ACID) models are impractical for long-
running conversations between distributed components.
- Using ACID with long running conversations increase the time to
commit a transaction, locking resources for prolonged periods of
time (e.g. database table locks).
- Using ACID with long-running conversations created temporal
coupling between components because the root coordinator of the
transaction ultimately drives all the transactional resources through
the 2 phase-commit protocol.
In a failure scenario, how to avoid compromising the integrity of the
data underlying an application?
How can a rollback capability be propagated across services?

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Solution

Wrap all service calls in a compensation-based service transaction
(also referred as extended transaction).
Ensure all services provide a rollback feature (referred as a
compensation handler) that resets all actions if the parent business
task cannot be successfully completed. A compensation undoes the
effect of a transaction.
Log the successes/failures and related compensation handlers at
each progression of the transaction logic, within each service, using
an extended transaction monitor component relaxing the ACID
(possibly a transaction manager).
Granular services may be wrapped in another service that provides
integrity checks and ensures successful completion or graceful
degradation, if any, if the granular services fails.

MSc in ESS (EA)

Remarks

Extended Transacted activities can consumer resources to preserve
compensation handlers for each granular service in case roll-back is
necessary (but much cheaper resource-wise than ACID i.e. storing
original state at each transaction step).
Note that in distributed computing architectures not all transactions
can be rolled back (for example sending an Email).
This pattern can make use of a commercial Transaction Managers at
risk of potential vendor lock-in.

MSc in ESS (EA)

Service Registry pattern

MSc in ESS (EA)

Context

Clients of a service need to determine the location of a service
instance to which to send requests to.
Using an inversion of control (IOC) also referred as dependency
injection is not an option because of the heterogeneity of the
distributed components at play in the architecture.

MSc in ESS (EA)

Problem

How do clients of a service (in the case of Client-side discovery)
and/or routers (in the case of Server-side discovery) know about the
available instances of a service?

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Solution

Implement a service registry, which is a centralized service locator
supported by a persistent data store registering services, their
instances and their locations.
Service instances are registered with the service registry on startup
and deregistered on shutdown.
Client of the service and/or routers query the service registry to find
the available instances of a service.
A Service Registry pattern provides a centralized point of control, and
act as a cache that eliminates redundant lookups.

MSc in ESS (EA)

Remarks

Every user of a service registry must have a dependency to the
service locator. The locator can hide dependencies to other
implementations, but you do need to see the locator.
Note: The service registry can become a single point of failure, but it
can be scaled, cached, or its directory get eventually replicated across
distributed components (not unlike DNS resolution/replication).
Example: Apache Zookeeper

MSc in ESS (EA)

Process Control pattern

MSc in ESS (EA)

Context

Need for an application of combining two or more non-sequential,
inter-dependent processing steps.
Multiple services invocations are required to complete an operation
and are known at design time, but the sequence of processing steps
may vary depending on decision rules applied to the results received.

MSc in ESS (EA)

Problem

How do you coordinate the execution of a long-running business
function that spans multiple disparate applications?
How do we route logic output through multiple business process
steps?

MSc in ESS (EA)

Overview

•

MSc in ESS (EA)

Solution

Define a business process model that describes the individual steps
that make up the complex business function.
Use a central processing unit, a Process Manager (or Process Engine),
to maintain the state of the sequence and determine the next
processing step based on intermediate results.
Create a separate process manager component that can interpret
multiple concurrent instances of this model and that can interact
with the existing applications to perform the individual steps of the
process.
After one application completes its business function, the process
manager determines which function to execute next based on the
state of the process instance.
Therefore, each participating application can operate individually
without any knowledge of the sequence of steps defined in the
process model.

MSc in ESS (EA)

Remarks

Orchestration of processes involves messages sent to external
systems and received from external systems.
These external systems implement the actions that make up the
business process. At any time, there are likely to be many instances
of the business process running at once, and any message that is
received must be correlated with the correct instance of the business
process that it was intended for.
Process Integration is commonly used to streamline the execution of
a sequence of tasks. One popular application in the financial industry
is the notion of straight-through processing (STP).
Frameworks:
- JBPM []http://www.jbpm.org/] BPM Engine
- DROOLS Decision Rules Engine (BRE)

MSc in ESS (EA)

Presentation Patterns

MSc in ESS (EA)

Model View Patterns / Back-end for Front-ends
(BFF)

MSc in ESS (EA)

Context

Based on our 1st lecture, we have reviewed typical statistics for
Enterprise RIA implementing an insurance quoting system:
- Composed ~=300 visible Web UI screens
- Delivered to ~=1500 active users, up to ~=3000
- Supporting 15-20 business processes
The same EAA now needs to be adapted so to enable Quoting
capabilities on Tablet devices and Smart phones.

MSc in ESS (EA)

About the family of Model View patterns

Splits user interface interaction into three distinct roles: Views - Controllers/View-
Models - Model.

Variations of server-side implementation:
- Controller/Model components using "Presentation Template" pattern on server side
- All Components on client-side with AJAX calls to Application API via services

Variations of mono-directional / bi-directional data binding on the client-side:
- Data binding between View and Model
- Data binding between View and View-Model

Both MVP and MVVM are derivatives of MVC. The key difference between both is the
dependencies each layer has on the other layers, as well as how tightly bound they
are with regard to each other.
Modern Web Development Frameworks Mobile or JS fully expose HTTP and provide
excellent implementation of MVC, MVP and/or MVVP.

MSc in ESS (EA)

Model

A Model represents domain-specific data or information a web
application will be working with. Models hold information but don't
handle behavior.

MSc in ESS (EA)

Views

A View is the part of the application that users interact with. A view
formats how data appears in the browser.
It contains the data bindings and events and behaviors, it is an
interactive UI that represents the state of a Controller/View-Model.
Views are not responsible for handling state.

MSc in ESS (EA)

Controller / View-Model

A Controller / View-Model can be considered as a specialized
Controller that acts as a data converter.
It changes Model information into View information, passing
commands from View to Model, and manages state.

MSc in ESS (EA)

About Session State patterns

MSc in ESS (EA)

Session States

Client Session State: Stores session state on the client. Session data
is not stored by the server but are added to each subsequent HTTP
request, using the cookie mechanism.

Server Session State: Keeps the session state on a server system in a
serialized form. This is the most common session pattern in use.
Frameworks often provide this capability as a turn-key solution.

Database Session State: Need to stores session data as committed
data in the database. A useful pattern to keep session persistent over
long periods of time, and provide session capability Across
heterogenous Devices (Mobile, Web, other).

MSc in ESS (EA)

Problem

How to provide for mobile devices without having to rewrite
application/domain logic?
How to maximize the re-use of application/domain logic regardless of
the client device used by users?
How to persist state between multiple heterogenous devices?
How to separate concerns between components in such a way that
the an enterprise RIA composed of hundreds of screens and work
flows remains maintainable?

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Solution

Consider architecting the application/domain logic of your enterprise
portal using a micro-services architectural style.
Consider architecting the RIA of an enterprise portal around
capabilities/features of the enterprise application using a Back-end
for Front-end pattern.
Use a Back-end for Front-ends (BFF) pattern, in which a dedicated
Component on the Server addresses the concerns for the Web client
real-estate it corresponds to.
Use a Back-end for Front-ends (BFF) pattern, in which a dedicated
Component on the Server addresses the concerns for the Client
Device it corresponds to.

MSc in ESS (EA)

Remarks

Visit the following link for more detail about this emerging pattern:
[http://samnewman.io/patterns/architectural/bff/]

MSc in ESS (EA)

Domain Patterns

MSc in ESS (EA)

Transaction Script Pattern

MSc in ESS (EA)

Context

Each interaction between a client system and a server system
contains a certain amount of logic.
Rules and logic describe many different cases and slants of behavior
generating complexity.

MSc in ESS (EA)

Problem

How to bring coherence, cohesion and consistency to application
domain logic of a component/system?
How to breakdown and keep complexity under control as application
grows?
How to revert back a transaction in the event that one of its
constituting part isn't successful?

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Solution

A Transaction Script component organizes the corresponding logic
primarily as a single operation, making downstream calls to other
components, or directly to a data source.
Each scenario has its own corresponding atomic Transaction Script.
Each Transaction Script sequences operation logic step-by-step,
method-by-method; method that can be roll-backed in case of
failure.
Common steps may be broken into operations for purposes of re-
use.

MSc in ESS (EA)

Remarks

This pattern is a step toward the Domain Model pattern, simpler to
implement.
Easy to implement, small/light, and can be refactoted into Domain
Model pattern later.
Works well for small applications, clicks well with data source
patterns, clicks well with Orchestration / Choregraphy patterns.

MSc in ESS (EA)

Shared Database pattern

MSc in ESS (EA)

Context

An enterprise has multiple applications that are being built
independently, with different languages and platforms.
The enterprise needs information to be shared rapidly and
consistently.
Data Assets are subject to strong regulatory requirements and must
be managed in one place.
Decentralized data sources must reconcile (comply) with master
data / authoritative sources.

MSc in ESS (EA)

Problem

How do you integrate information systems that were not designed to
work together?
How can I integrate multiple applications so that they work together
and can exchange authoritative information?

MSc in ESS (EA)

Solution

Integrate applications at the logical data layer.
Integrate applications by having them store their data in a single
Shared Database.

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Remarks

If a family of integrated applications all rely on the same database,
then you can be pretty sure that they are always consistent all of the
time.
If you do get simultaneous updates to a single piece of data from
different sources, then you have transaction management systems
that handle that about as gracefully as it ever can be managed.
Since the time between updates is so small, any errors are much
easier to find and fix.

MSc in ESS (EA)

Maintain Data Copies pattern

MSc in ESS (EA)

Context

Need to have read-only copies of some OLTP data sets for heavy duty
reporting purposes (i.e. complex query joins in a RDMBS for
example).
Reporting activities must not impact the performance of source
Transactional Systems.

MSc in ESS (EA)

Problem

How do you allow disparate application databases to share
information without impacting performance of each other?

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Solution

Have multiple applications access multiple copies of the same data.
Maintain state integrity between copies.
Instead of sharing a single instance of a database between
applications, make multiple copies of the database so that each
application has its own dedicated store. Keep these copies
synchronized, by copying data from one data store to the other.
This approach implies that each different data stores are slightly out
of synchronization due to the latency that is inherent in propagating
the changes from one data store to the next, referred as eventual
consistency.

MSc in ESS (EA)

Remarks

The mechanisms involved in maintaining data copies are complex,
e,g, Move Copy of Data
 Real-time Data Replication
 Master-Master Replication
 Master-Subordinate Replication
 Master-Master Row-Level Synchronization
 Master-Subordinate Snapshot Replication
 Capture Transaction Details
 Master-Subordinate Transactional Incremental

MSc in ESS (EA)

Object-Relational patterns

MSc in ESS (EA)

Data Access Object

MSc in ESS (EA)

Context

Need to access data, where the source of the data can vary.

MSc in ESS (EA)

Problem

How to abstract business logic from data operations persistence?
Interfaces to data sources vary:
- RDBMS/SQL interfaces can vary
- DBMS can vary
- NoSQL Solutions can vary
- etc.

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Solution

Use a Data Access Object (DAO) to abstract and encapsulate access to
business objects in the data source.

MSc in ESS (EA)

Example: Table Data Gateway

An object that acts as a Gateway to a database table. One instance
handles all the rows in the table.
Mixing SQL in application logic can cause several problems.
Many developers aren't comfortable with SQL, and many who are
comfortable may not write it well.
Database administrators need to be able to find SQL easily so they
can figure out how to tune and evolve the database.
A Table Data Gateway holds all the SQL for accessing a single table or
view: selects, inserts, updates, and deletes.
Other code calls its methods for all interaction with the database.

MSc in ESS (EA)

Example: Active Record

An object that carries both data and behavior.
Much of its data is persistent and needs to be stored in a database.
Active Record uses the most obvious approach, putting data access
logic in the domain object.
This way all people know how to read and write their data to and
from the database.

MSc in ESS (EA)

Remarks

Centralizes All Data Access into a central place.
Access to implementation details hidden within DAO.
Reduces Code Complexity in Business Logic.
No details, such as SQL, in business logic.
Enables Easier Migration.

MSc in ESS (EA)

Entity Aggregation pattern

MSc in ESS (EA)

Context

Enterprise-level data is distributed across multiple repositories in an
inconsistent fashion.
Existing applications need to have a single consistent representation
of key entities which are logical groups of related data elements such
as Customer, Product, Order, or Account.
Moving data between these repositories may not be a viable option.

MSc in ESS (EA)

Problem

How can enterprise data that is redundantly distributed across
multiple repositories be effectively maintained by applications?

MSc in ESS (EA)

Overview

MSc in ESS (EA)

Solution

Introduce an Entity Aggregation pattern that provides a logical
representation of the entities at an enterprise level with physical
connections that support the access and that update to their
respective instances in back-end repositories.

MSc in ESS (EA)

Remarks

One of the key messages of object orientation is bundling the data with
the behavior that uses it.
Two popular variants of the pattern achieve this:
- Domain Model
- Table Module

ORM Frameworks:
- Hibernate

Disadvantages of ORM tools generally stem from the high level of
abstraction obscuring what is actually happening in the implementation
code.
Also, heavy reliance on ORM software has been cited as a major factor
in producing poorly designed databases.

MSc in ESS (EA)

Domain Model pattern

An object model of the domain that incorporates both behaviour and
data.
A Domain Model represents a meaningful individual data record e.g.
a single line on an order form.
A Domain Model Component operations expose many different
actions to manipulate the record.

MSc in ESS (EA)

Table Module pattern

A single instance that handles the business logic for all rows in a
database table or view.
The primary distinction with Domain Model is that, if you have many
orders, a Domain Model will have one order object per order while a
Table Module will have one object to handle all orders.
Operations on a Table Module component are about exposing
behavior or relationships between records, and perform actions on a
set of related records.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177

