Design Patterns

MSc in Computer Science

Eamonn de Leastar (edeleastar@wit.ie)

Department of Computing, Maths & Physics
Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Waterford Institute of Technology 0 elLearning .
support uni

cﬁ\ - INSTITIOID TECNEOLAIOCHTA PHORT LARCE
ISt

T —

mailto:edleastar@wit.ie

Patterns Labs

Lab-01 Lab-02

Lab-03

a

a

Welcome to pacemaker-console - ?help for
pm> cuaaaa

o —————————— O ettt Sttt -
| ID | FIRSTNAME | LASTNAME | EMAIL | PAS
Phmmel aMain P g e

News Download Document o+ g ¥ X

»tend I 1 al al al
i et T ===

N SOFTWARE & pm>cu b bbb

S Toous W |5 e | ok | i |
s JAVA 10, TODAY! [Etssssa Puinllial Bisieleibiss

| 2 b | b | b |
o ————————— o —————— e N

Prepare an suitable version of
Eclipse for the forthcoming labs.
Download and become familiar with
the pacemaker-console project.
Explore the Strategy pattern in this
context.

Lab-05a

Lab-05b

e Pacemaker

Activities

MyActivity{null, run, fridge, 15.0}

MyActivity{null, den, tv, 17.0}

Extend the pacemaker-android app
to enable activities to be listed.
Explore three patterns in this
context: Memento, Singleton,
Adapter

Layout a new Android project with a
single activity. Design this activity to
permit simple sports activities to be
specified. Implement the Activity
class to support these controls

a

Review the Java variants of the
template method and strategy
patterns. Reoode these in Xtend.
Reimplement Strategy using
Lambdas in Xtend

Rework the cliche library, using
Strategy to delegate command
processing. Implement the
Command pattern into a simplified
version of Pacemaker. Extend the
implementation to include
undo/redo capability

Lab-06a Lab-06b

Build a set of views to support
signup/login and navigation.
Incorporate suitable models.
Introduce the Facade pattern to
encapsulate Model access.

Extend the pacemaker-service
application to incorporate service
layer. Utilize the layer in the
pacemaker-android to retrieve a list
of current users

lab-03b

public Command copy()

CreateUserCommand command = new CreateUserComm
command.ser = user;
return command;

}
and also in the DeleteUserCommand:
public Command copy()

DeleteUserCommand command = new DeleteUserComm
command.ser = user;
return command;

}

Explore some deficiencies in the
pacemaker command pattern
implementation. Introduce
prototype into the pacemaker
application to fix these issues.

Lab-06c

ut
ayout
Pacemaker
View
xt
Text
xt

Activities

ftem 1
Sub e

tton
ton

Item 2

Properties 7 5
layoutwidth
layoutheight match_pare
style
accessibilityLiv
accessibilityTr.
accessil bilityTr.
alpha
background

ftem3

itton
won s
w

8ar (Large)

ltems
Sun tem 5

8ar (Normal)
8ar (Small)

8ar (Horizontal) backgroundTin

backgroundTin
clickable

contentDescrip

Complete the android application to
include activity sync support using
the Half Sync/Half Async Pattern.
Overlay this with a Mediator
implementation.

https://github.com/wit-design-patterns-2016

T ol | I o A

— s 4 b o =
-

~+—..- wit-design-patterns-2016

E]Repositories People 1 Teams 0 Settings
Filters ~
People 1>
e edeleastar
pacemaker-android Java %0 150 Eamonn de Leastar

Updated 3 days ago
Invite someone

pacemaker-service JavaScript % 0 190
Updated 3 days ago

part-1 *0 o
Updated 6 days ago

pacemaker-console Java %0 P70

Updated 28 days ago

cliche Java %0 PO

Updated 28 days ago

solver-patterns Java %0 0

Updated on Jan 27

https://github.com/wit-design-patterns-2016

Strategy

Context I‘

Type: Behavioral

What it is:

Define a family of algorithms,
encapsulate each one, and make them
interchangeable. Lets the algorithm vary
independently from

clients that use it.

Lab-01

3 SOFTWARE &

N TOOLS
.

Prepare an suitable version of
Eclipse for the forthcoming labs.
Download and become familiar with
the pacemaker-console project.
Explore the Strategy pattern in this
context.

«interface»
Strategy

+execute()

JAN

ConcreteStrategyA

ConcreteStrategyB

+execute()

+execute()

Template Method

Type: Behavioral

What it is:

Define the skeleton of an algorithm in an

AbstractClass Context b—‘

«interface»

+templateMethod() Stratagy
#subMeth Od() +execute()

/N

operation, deferring some steps to subclasses. ConcreteStrategyA | | ConcreteStrategyB

Lets subclasses redefine certain steps

of an algorithm without changing the

+execute()

+execute()

algorithm's structure.

Lab-02

))(tend News Download Document

ConcreteClass

+subMethod()

https://github.com/wit-design-patterns-2016/solver-patterns

14 lambda examples
: 13 the lambda algroithms + test (java 8)
12 java 8 findminima interface + solver
JAVA 10, TODAY! 11 and extra test exploring the SAM feature of xtend
10 test for xtend lambda strategies
9 version of strategy using xtend lambdas

Review the Java variants of the
template method and strategy
patterns. Reoode these in Xtend.
Reimplement Strategy using
Lambdas in Xtend

R N W 010y d

xtend strategy tests

strategy in xtend classes

test for xtend template method

extend version of template method + project configuration changes
strategy pattern tests

strategy pattern classes

template method test

template method example classes

Client

[,

) Invoker

¢

Y vV

— - ConcreteCommand

+execute()

Receiver

+action()

https://github.com/wit-design-patterns-2016/pacemaker-console

Command

+execute()

Command

Type: Behavioral

What it is:

Encapsulate a request as an object,
thereby letting you parameterize clients
with different requests, queue or log
requests, and support undoable operations

Lab-03

Welcome to pacemaker-console - 7help for
pm> Cu aaaa

+

ID | FIRSTNAME | LASTNAME | EMAIL | PAS
1 | a | a | a |

l
[

pm> cu bbbb

+

=
O o K

R N W 01Ty d ©

Lab03a, origin/master) undo command support

simplified PacemakerShell class to use command pattern

command dispatcher + specification helper
initial command interface + commands
renamed dependent project

refactored to PacemakerShell to new main package. Adjust visibility «
refactor to use https://github.com/budhash/cliche.git (as an eclipse
serialiser used in pacemaker service + command shell
JSONSerializer implementation

Serialiser strategy interface factored out from XMLSerializer

(tag: Lab01)

first version inherited from agile labs

ID | FIRSTNAME | LASTNAME | EMAIL | PAS

|
|2 b | b | b |
Rework the cliche library, using
Strategy to delegate command
processing. Implement the
Command pattern into a simplified

version of Pacemaker. Extend the
implementation to include

undo/redo capability

Prototype

Type: Creational

What it is:

Specify the kinds of objects to create
using a prototypical instance, and
create new objects by copying this
prototype.

lab-03b

public Command copy()
{

CreateUserCommand command = new CreateUserComm

command.ser = user;
return command;

}
and also in the DeleteUserCommand:

public Command copy()
{
L

DeleteUserCommand command = new DeleteUserComm

command.ser = user;
return command;

}

Explore some deficiencies in the
pacemaker command pattern
implementation. Introduce
prototype into the pacemaker
application to fix these issues.

Client

i

«interface»
Prototype

+clone()

/\

ConcretePrototype1

+clone()

ConcretePrototype2

+clone()

https://githubb.com/wit-design-patterns-2016/pacemaker-android

37 (tag: V7) adjust app and controllers to use mediator
36 mediator classes

35 (tag: V6) incorporate activities managements into controllers
34 facade now supports activities management
33 extend API to retrieve/upload activities

32 (tag: V5) remove reference to type in user

31 in Welcome, download list of users from pacemaker-play service
30 introduce PacemakerAPI wrapper classes to access service

29 rename user.type to user.kind to avoid json parsers problems
28 enable network access in AndroidManifest

27 JSON parsers for user model objects

26 http wrapper classes for REST access

25 import json + apache libraries into project

24 separate activities by user

23 (tag: V4) Facade pattern to encapsulate model management

22 track user signup + login. Maintain user list in PacemakarApp.
21 Welcome, Signup and Login activities + manifest adjustment

20 User model introduced

19 resources for welcome, signup and login activities

18 (tag: V3) refactored package structure into main, controllers, models
17 custom row for activity list adapter

16 (tag: V2) replace stock adapter with a customised ArrayAdapter
15 replace parcelable implementation with simple singleton access
14 application singleton introduced

13 render the activities with a simple ArrayAdapter

12 log the our to the console in ActivitiesList

11 parcel up the activities in CreateActivity

10 make MyActivity Parcelable

9 (tag: V1) Create MyActivities models objects in CreateActivities View
8 new button on CreateActivities view show activities

7 MyActivity model object introduced

6 added ActivitiesList activity

5 wired up controls in CreateActivity class

4 introduce button widget + event handler

3 placed button on layout

2 first update to layout

1 as generated by android studio 2.0

Observer
Type: Behavioral

What it is:

Define a one-to-many dependency between
objects so that when one object changes
state, all its dependents are notified and
updated automatically.

Lab-05a A

Vi
R out
3 createActivity Title (TextView) - @string

@ createActivityButton (Button) - @string

Properties

layoutheight

style
accessibilityLiveRegiol
accessibilityTraversal/
accessibilityTraversalé
alpha

background
backgroundTint
backgroundTintMode
clickable
contentDescription

contextClickable
elevation

focusal ble
focusableinTouchMod
foreground
foregroundGravity 0
foregroundTint

Layout a new Android project with a
single activity. Design this activity to
permit simple sports activities to be
specified. Implement the Activity
class to support these controls

«interface» B
Subject notifies «interface»

+attach(in o : Observer) | ISR S VOl

+detach(in o : Observer) +update()

+notify()
N /\

ConcreteSubject | jpserves | ConcreteObserver

-subjectState ¢ -observerState
+update()
5 wired up controls in CreateActivity class
4 introduce button widget + event handler
3 placed button on layout
2 first update to layout
1 as generated by android studio 2.0

Lab-05b

Memento

Type: Behavioral

Caretaker IH -state

What it is:
Without violating encapsulation, capture
and externalize an object's internal state

Memento

so that the object can be restored to this

Originator

-state

+setMemento(in m : Memento)

+createMemento()

Convert the interface of a class into
another interface clients expect. Lets
classes work together that couldn't

es View

state later.
]
Pacemaker
o «interface» Adapter
Activities Adapter P P
MyActivity{null, run, fridge, 15.0} +operation() Type: Structural
MyActivity{null, den, tv, 17.0} A What it is:
ConcreteAdapter Adaptee otherwise because of incompatible
) -adaptee interfaces.
Extend the pacemaker-android app _ +adaptedOperation()
to enable activities to be listed. +operation()
Explore three patterns in this .
context: Memento, Singleton, SlngletOn
Adapter ,
Type: Creational
What it is:
Ensure a class only has one instance and
provide a global point of access to it.
16 (tag: V2) replace stock adapter with a customised ArrayAdapter
15 replace parcelable implementation with simple singleton access
14 application singleton introduced
13 render the activities with a simple ArrayAdapter
12 log the our to the console in ActivitiesList
11 parcel up the activities in CreateActivity
10 make MyActivity Parcelable
9 (tag: V1) Create MyActivities models objects in CreateActiviti
8 new button on CreateActivities view show activities
7 MyActivity model object introduced
6 added ActivitiesList activity

Singleton

-static uniquelnstance
-singletonData

+static instance()
+SingletonOperation()

Facade Facade

Complex system

Type: Structural

What it is:

Provide a unified interface to a set of
interfaces in a subsystem. Defines a high-
level interface that makes the subsystem
easier to use.

Lab-06a

23
22
21
20
19
18
17

(tag: V4) Facade pattern to encapsulate model management
track user signup + login. Maintain user list in PacemakarApp.
Welcome, Signup and Login activities + manifest adjustment
User model introduced

resources for welcome, signup and login activities

(tag: V3) refactored package structure into main, controllers, m
custom row for activity list adapter

Build a set of views to support

signup/login and navigation.
Incorporate suitable models.
Introduce the Facade pattern to
encapsulate Model access.

Lab-06b AN

Dashboard Upload Logout

Activities

Type Location Distance

Retrieve a list of users from a
remote REST service. Implement
this using the using the Half
Sync/Half Async Pattern.

-t

,~ "Encapsulated” \)
\ .. Impiementation _.
LS
concurmrent implementation

'L‘ ~

¢+~ Half-Sync/
‘. Half-Async _

-~ -

— ——

aEas

internal
_ g TSN S ~a deSlgn 7 =7
Layers j— . Resoul
~ -~ = -~
o = - concurrent queuing layer ~——
J— _ processing serialization -
" Active Object ye— | . Monko
~ - o
N ———— - OS API ————— -
e —— ~. encapsulation queuing L T
"Wrapper Facade e 1 policy variation | \ Templat
~ -~ - -~ l \| S .-
== request/response 1 B
=TT =~ encapsulation LT
_ Message e ‘ 1 ' Stre
I

N ——— ——

32
31
30
29
28
27
26
25
24

(tag: V5) remove reference to type in user

in Welcome, download list of users from pacemaker-play service
introduce PacemakerAPI wrapper classes to access service
rename user.type to user.kind to avoid json parsers problems
enable network access in AndroidManifest

JSON parsers for user model objects

http wrapper classes for REST access

import json + apache libraries into project

separate activities by user

+ wit-design-patterns-2016/pacemaker-service

informs

i Mediator
Mediator ¢ g:ﬁf:ﬁ:

A A Type: Behavioral

What it is:

Define an object that encapsulates how a
set of objects interact. Promotes loose
coupling by keeping objects from referring
to each other explicitly and it lets you vary
their interactions independently.

updates

ConcreteMediator) ConcreteColleague

Lab-06c AN

layoutwidth
layoutheight match_pare
style

accessibilitylin

accessibilityTr.
accessibilityTr.
alpha
background
backgroundTin
backgroundTin

37 (tag: V7) adjust app and controllers to use mediator :&m’
36 mediator classes =
35 (tag: V6) incorporate activities managements into controll

34 facade now supports activities management
33 extend API to retrieve/upload activities

clickable

contentDescrip

Complete the android application to

include activity sync support using
the Half Sync/Half Async Pattern.
Overlay this with a Mediator
implementation.

pacemaker-android Releases

| recases [
Lab06¢

LabO6
LabO6a
LabO50

Lab05a

<> Code Issues 0

Pull requests 0

O 54784e6

V6 -
o 5333a26

V5 .
o Sedb21f

V4 ..
-O- e€5bbae7

V3 .
O B20d46f

V2
O 506ae59

Vi
o d82138d

B zip

) zip

) zip

) zip

[£) zip

) zip

) zip

wit-design-patterns-2016 / pacemaker-android

Wiki

[) tar.gz

[£)tar.gz

[£) tar.gz

[£) tar.gz

[£) tar.gz

[£) tar.gz

[£) tar.gz

Pulse

Resources for Further

- GoF Patterns

- Common Design Patterns for Android

Development (

- Overview & Mapping of GoF design patterns with Android API’s

- Factory Patterns / Dependency Injection

- Butterknife
- Dagger
- Frameworks
- Retrofit
- Realm
- Architectural Patterns
- ReactiveX

- Clean Architecture

Project)

Common Design Patterns for Android

http://www.raywenderlich.com/109843/common-design-patterns-for-android

Useful outline of
selected GoF
patterns in
Android context

Common Design Patterns for Android
[M] et Luedke on December 15, 201 =

Beyond satisfying your clients and your employer, there's one more important individual
to keep happy in your career as a developer: Future You! (The artist’s conception of
Future You to the right implies no guarantee of personal jetpack availabilty for
developers in the near future.) :]

Future You will inherit the code you write at some point down the road, and will likely
have a lot of questions about how and why you coded things the way you did. But
instead of leaving tons of confusing comments in your code, a much better approach is
to adopt common design patterns.

This article will introduce a few common design patterns for Android that you can use
while developing apps. Design patterns are reusable solutions to common software
problems. The design patterns covered here aren’t an exhaustive list, nor an
academically-citable paper. Rather, they serve as a workable references and starting
points for further investigation.

Getting Started

“Is there anywhere in this project where I'll have to change the same thing in multiple places?” - Future You

“Future You”

Future You should minimize time spent doing “detective work” looking for intricate project dependencies, so they would prefer
a project that's as reusable, readable, and recognizable as possible. These goals span a single object all the way up to the entire
project and lead to patterns that fall into the following categories:

e Creational patterns: how you create objects.
e Structural patterns: how you compose objects.
e Behavioral patterns: how you coordinate object interactions.

You may already be using one or several of these patterns already without having A Capitalized Fancy Name for it, but Future
You will appreciate you not leaving design decisions up to intuition alone.

In the sections that follow, you'll cover the following patterns from each category and see how they apply to Android:

Creational

o= o8 08

Overview & Mapping of GoF design patterns with Android API's

http://vardhan-justlikethat.blogspot.ie/2013/10/mapping-gof-design-patterns-with.html

- |dentifies and
names Patterns in
the Android SDK

Patterns | Definition | Android
Creational
Singleton Ensure a class has only one Application Class
instance and provide a global (AndroidManifest.xml’s tag)
point of access to it.
Abstract Provides an interface for creating | Interface ComponentCallbacks
Factory families of related or dependent (The set of callback APIs that are
objects without specifying their common to all application
concrete classes. components Activity, Service,
ContentProvider, and
Application)
Activity, Service,
ContentProvider,
AbstractAccountAuthenticator,
ActionBar.Tab,
Factory Define an interface for creating We can relate this design pattern
Method an object, but let the subclasses with multi pane layout.
decide which class to instantiate. -) .)
The Factory method lets a class It's like choosing which view to be
defer instantiation to subclasses lgaded whether handset or tablet
views.
The Factory method works just the
same way: it defines an interface
for creating an object, but leaves
the choice of its type to the
subclasses, creation being
deferred at run-time.
Builder Construct a complex object from StringBuilder
simple objects step by step
Structural
Adapter Convert the interface of a class ListView, GridView, Spinner and
(Wrapper into another interface clients Gallery for commonly used
pattern / expect. Adapter lets classes work | subclasses of AdapterView.
Decorator together that couldn't otherwise
pattern) because of incompatible

interfaces.

(Adapter design pattern is used
when you want two different
classes with incompatible
interfaces to work toeether)

http://vardhan-justlikethat.blogspot.ie/2013/10/mapping-gof-design-patterns-with.html

Butterknife
http://jakewharton.github.io/butterknife/

Introduction

Annotate fields with @8ind and a view ID for Butter Knife to find and automatically cast the
corresponding view in your layout.

class ExampleActivity extends Activity {
@Bind(R.1id.title) TextView title;
@Bind(R.1id.subtitle) TextView subtitle;
@Bind(R.1id.footer) TextView footer;

1 []
°
Simplify
. . @0verride public void onCreate(Bundle savedInstanceState) {
BI n d I n g super.onCreate(savedInstanceState);
setContentView(R.layout.simple_activity);

Butterknife.bind(this);
// TODO Use fields...

}

Butter Knife «

Instead of slow reflection, code is generated to perform the view look-ups. Calling bind delegates
to this generated code that you can see and debug.

Field and method binding for Android

views
The generated code for the above example is roughly equivalent to the following:

public void bind(ExampleActivity activity) {
Javadoc - StackOverflow activity.subtitle = (android.widget.TextView) activity.findViewById(213096857¢
activity.footer = (android.widget.TextView) activity.findViewById(2130968579):
activity.title = (android.widget.TextView) activity.findViewById(2130968577);

}

RESOURCE BINDING

Bind pre-defined resources with @8indBool, @BindColor , @indDimen, @BindDrawable ,
@BindInt, @BindString, which binds an R.bool ID (or your specified type) to its corresponding
field.

class ExampleActivity extends Activity {
@BindString(R.string.title) String title;
@BindDrawable(R.drawable.graphic) Drawable graphic;
@BindColor(R.color.red) int red; // int or ColorStatelList field
@BindDimen(R.dimen.spacer) Float spacer; // int (for pixel size) or float (for
s

Dagger
http://square.github.io/dagger/

D a g g e r Download v1.2.2 O B

A fast dependency injector for Android and Java

- Library

Incorporating
oG/ Introduction P
ntroduction
Dependency . o
, , The best classes in any application are the ones that do stuff: the Usina D
ﬂJeCtIOﬂS BarcodeDecoder , the KoopaPhysicsEngine , and the AudioStreamer . These Sing Lagger
Da-ttern fOr classes have‘depen.denmes; perhaps a BarcodeCameraFinder , Download
A d d DefaultPhysicsEngine , and an HttpStreamer .
Narol To contrast, the worst classes in any application are the ones that take up space gpgradmg from
without doing much at all: the BarcodeDecoderFactory , the uice
CameraServiceloader , and the MutableContextWrapper . These classes are the Contributing
clumsy duct tape that wires the interesting stuff together.
Dagger is a replacement for these FactoryFactory classes. It allows you to License
focus on the interesting classes. Declare dependencies, specify how to satisfy
them, and ship your app. T

By building on standard javax.inject annotations (JSR-330), each class is easy to
test. You don't need a bunch of boilerplate just to swap the
RpcCreditCardService out fora FakeCreditCardService . StackOverflow

dagger-discuss@

Dependency injection isn't just for testing. It also makes it easy to create
reusable, interchangeable modules. You can share the same
AuthenticationModule across all of your apps. And you can run
DevLoggingModule during development and ProdLoggingModule in production to
get the right behavior in each situation.

For more information. watch an introductorv talk by Jesse Wilson at QCon 2012.

Retrofit
http://square.github.io/retrofit/

R et rOflt Download v2.0.0-betad O

A type-safe HTTP client for Android and Java

“Sane” Rest client

development

Introduction

Retrofit turns your HTTP API into a Java interface.
public interface GitHubService {

@GET("users/{user}/repos™)
Call<List<Repo>> listRepos(@Path("user”) String user);

}

The Retrofit class generates an implementation of the GitHubService interface.
Retrofit retrofit = new Retrofit.Builder()

.baseUrl("https://api.github.com™)
.build();

GitHubService service = retrofit.create(GitHubService.class);

Each Call from the created GitHubService can make a synchronous or asynchronous HTTP request to

WatCh thIS Vldeo the remote webserver.

-

P s | Lo e Do o o eawmiis eca s clbDoawmacr Wl nl N

Introduction

API Declaration
Retrofit Configuration
Download
Contributing

License

Javadoc

StackOverflow

https://realm.io/news/aroidcon-jake—wharton-simple—http—retrofit-Z/

VoL dimuviduuviio ItV ULovlive aiv ity teyutot.

e URL parameter replacement and query parameter support
» Object conversion to request body (e.g., JSON, protocol buffers)
» Multipart request body and file upload

Note: This site is still in the process of being expanded for the new 2.0 APls.

Realm
https://realm.io/

USERS NEWS ADD-ONS DOCUMENTATION~ PRICING JOBSE@ CONTACT @~

| ocal
Persistence

We just launched Realm React Native! Read more on our blog.

Realm is a mobile database
hundreds of millions of people rely on

Enter your email to join our community newsletter

Subscribe

ReactiveX
http://reactivex.io/

* ReactiveX

~ ReactiveX

. ReaCtlve An API for asynchronous programming
Approached with observable streams

Choose your platform

The Observer pattern done right

ReactiveX is a combination of the best ideas from
the Observer pattern, the Iterator pattern, and functional programming

Resources for Further Android Development (9)

http://fernandocejas.com/2014/09/03/architecting-android-the-clean-way/
Architecting Android...The clean
way?

Over the last months and after having friendly discussions at Tuenti with colleagues like
@pedro_g_s and @flipper83 (by the way 2 badass of android development), | have
decided that was a good time to write an article about architecting android applications.
The purpose of it is to show you a little approach | had in mind in the last few months plus

R e aCt ive all the stuff | have learnt from investigating and implementing it.
Approached Getting Started

We know that writing quality software is hard and complex: It is not only about satisfying
requirements, also should be robust, maintainable, testable, and flexible enough to adapt
to growth and change. This is where “the clean architecture” comes up and could be a
good approach for using when developing any software application.

The idea is simple: clean architecture stands for a group of practices that produce systems
that are:

Independent of Frameworks.
Testable.

Independent of UL

Independent of Database.
Independent of any external agency.

Ul O Frameworks and Drivers

O Interface adapters

Presenters

Dependency
Rule

- - -

Clean Architecture

http://fernandocejas.com

http://blog.8thlight.com/uncle-bolb/2012/08/13/the-clean-architecture.html

The Clean Architecture

Controllers

| | Enterprise Business Rules

Use Cases

| | Application Business Rules

/D Interface Adapters

/D Frameworks & Drivers

pr—] S
Use Case

Output Port

Use Case
Interactor

Use c.ul,

Controller Input Port

Links and Resources

1. The clean architecture by Uncle Bob

2. Architecture is about Intent, not Frameworks
3. Model View Presenter

4. Repository Pattern by Martin Fowler

5. Android Design Patterns Presentation

Model

Presentation
Layer

Model View
Presenter

S10joelaju|

Domain
5 Layer .
(] 0]
o . B
Q Bussiness 7]
e Objects o]
5 <
g 5
= Interactor 2
® Implementations §
View
- Presenter
Domain Data
Layer Layer
oy}
2
2
]
Regular Java o Repository
Objects Pattern

Waterford Institute of Technology

.o INSTITIOID TECNEOLAIOCHTA PHORT LAIRGE

H©

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

i

elLearning
support unit

