
Design Patterns 2016

Assessment Structure

Design Patterns Course Structure

• Part 2: Software Architectures

• Weeks 6-12

• Pierre Peclier

2

• Part 1: Classic Design Patterns

• Weeks 1-6

• Eamonn de Leastar

• Agile Software Development (last semester)

• Dr. Siobhan Drohan

Assessment Breakdown

• 50% Final Examination

• 50% Continuous Assessment

3

Examination

• 2 Hour Duration, 2 Parts

• Part 1 : Problem Oriented

• Given a problem specification - develop narrative for outline solution(s).

• Narrative to include

• Structure / design

• Patterns, Psuedocode, Commentary

• Part 2: Discursive

• Exploration of Architectures, styles, notations and case studies

• Focus on forces, trends and large scale enterprise architectural decision
making and tradeoffs.

4

Continuous Assessment

• 2 Elements

• A Programming Assignment

• A “Patterns Companion/Architecture” document for the project

• Submit final version at end of semester

5

Single Request
Below are are four short descriptions of problems in specific contexts. Two solutions
are required for each problem - the second an elaboration on the first. Each solution
is to be structured as follows:

Briefly outline of the relevant design pattern(s), with a focus on outlining the
responsibilities associated with specific roles in the selected pattern.

5 Marks

A solution to Version 1 expressed as a class diagram and with a high level sketch
of the classes involved. Methods in the class can be expressed in any suitable
pseudocode.

10 Marks

A Solution to Version 2, expressed as modifications to Version 1 with further
classes and pseudocode if necessary.

10 Marks

A short summary of the benefits of adopting the selected patterns.

8 Marks

Select any three of the problems and propose outline solutions. All problems are
awarded equal marks.

6

Example Problem 1

As part of an XML messaging processing system, a class ProcessMessage has
been put in place to handle incoming messages. It has a method filter(...) which will
be passed each message as it arrives. Among other tasks (logging, security
checking etc...), the filter() method is also to identify any element in the messages
with the <extension> tag. When these are encountered this part of the message it to
be passed to another class for processing - called the ExtensionProcessor. There
may be multiple <extension> elements in a document.

• Version 1 of the design should enable just one ExtensionProcessor to be
installed. All <extension> elements are to be passed to this class.

• Version 2 should support multiple ExtensionProcessors. The <extension> should
be offered to each processor in some well define sequence. If the <extension>
can be processed by one of the processors, then it is considered “consumed”
and the next <extension> should be processed.

7

Example Problem 3

A bug tracking application is to be developed to support the automated
management of bugs in a software project. Among the features to be
implemented is a core set of bug management commands: a bug can be
entered, deleted, allocated to a particular subsystem, its status updated
(pending, fixed, not reproduced) and its priority level (1,2 or 3) adjusted. Each
of these commands can be entered on a console or driven through a
graphical user interface.

• Version 1 should support the commands as specified and ensure
appropriate encapsulation of the command execution and an elementary
command logging facility.

• Version 2 should support an generic undo/redo capability for selected
commands.

8

Key Sources

• GOF

• Most typically illustrated within

GUI applications (Android, IOS,
Native)

9

• PEAA

• Most typically illustrated within Web

Applications (

Other sources - POSA - 5 Volumes!

Other Sources - Domain Driven Design

