# Mobile Application Development Junior infants crypto maths 

Waterford Institute of Technology

November 22, 2016
John Fitzgerald

## Sign your app

## Learning objectives

An overview of:

- Mathematics underlying encryption.
- Extremely simple explanations.
- Real-world encryption uses huge numbers:
- Example: 600 digits; 2000 bits.
- We work with smallest possible quantities for learning purpose.
- We provide examples of:
- Prime numbers.
- Generators.
- Modular arithmetic.
- Symmetric key encryption.
- Public key encryption.
- Hashing


# Number Theory 

The briefest of introductions

## Number Theory

# Crypto maths 

Prime number

- Natural numbers: whole numbers: $0,1,2,3, \ldots$
- Prime: natural number divisible only by itself and one.
- Examples of primes: 2, 3, 5, 7, 11, 13
- 4 is not prime because it is divisible by 2 .
- Zero and one are not considered primes.


## Crypto maths

Prime number

- There is an infinite number of primes.
- Primes still being discovered.
- Structure of pattern of primes still unsolved.
- In real-world cryptography huge prime numbers are used.
- Typically 600 digits, approximately 2000 bits.
- We will work with very small primes.


# Crypto maths 

Prime number

- All natural numbers are either prime or composite numbers.
- A number not a prime number is a composite.
- Prime: 7 because factors are itself and one only.
- Composite: 8 because factors are $1,2,4,8$ and so not prime.


## Crypto maths

Euclid's discoveries (300 BC)

- Realized all numbers prime or composite.
- Any number repeatedly divisible until set primes arrived at.
- $15=3+3+3+3+3$
- $25=5+5+5+5+5$
- $49=7+7+7+7+7+7+7$


# Crypto maths 

Euclid Fundamental Theorem of Arithmetic

Also called Unique Factorization Theorem or
Unique Prime Factorization Theorem

- Every integer greater than 1 either prime or product of primes
- Example: $30=2 \times 15$ (The prime 2 added 15 times)


## Crypto maths

Euclid Fundamental Theorem of Arithmetic

- $30=2 \times 15$ (The prime 2 added 15 times)
- $30=3 \times 10$ (The prime 3 added 10 times)
- $30=5 \times 6$ (The prime 5 added 6 times)
- 2, 3 and 5 are the prime factors of 30 .


## Crypto maths <br> Euclid Fundamental Theorem of Arithmetic)

- $2 \times 3 \times 5$ is prime factorization of 30 .
- Every number has one \& only one prime factorization.
- Unique: no two numbers have same factorization.
- Analogy: each number different lock with unique key.
- The unique key: the prime factors.
- No two locks share same key.
- No two numbers share prime same factorization.


## Crypto maths

Modular arithmetic

- Also referred to as clock arithmetic.
- Number wraps around when modulus reached.
- In case of 12 -hour clock the modulus is 12
- Valid range numbers is 0 to 11 .
- Example modular addition:

- $9+2 \bmod 12=11$
- $9+3 \bmod 12=0$
- $9+4 \bmod 12=1$


# Crypto maths 

Modular arithmetic

- Java uses \% operator for modular arithmetic.
- Example where modulus is 12 :
- $15 \% 12$ is 3
- 3 is the remainder when 15 divided by 12 .

Modular Arithmetic Congruence

- Also expressed as $15 \bmod 12$
- So $15 \bmod 12$ is congruent to 3 .
- Which may be expressed as $15 \bmod 12 \equiv 3$.


## Hashing

What are hashes \& how are they generated?

## $\mathcal{H a s h}$ \& $\mathcal{H a s h} \mathcal{A l g o r i t h m s ~}$

## Hashing

What are hashes \& how are they generated?

- Cryptographic hash function:
- Input: message variable length.
- Output: fixed-size alphanumeric string.
- Complexity: algorithmic complexity high.


## Hashing

What are hashes \& how are they generated?

- Cryptographic hash function:
- Example: SHA-1
- Output: fixed-size alphanumeric string.


## Hashing

Trivial example hash function - definitely not cryptographic standard

```
// Input: any-length string
// Output: 3-digit integer
static int modulus = 1000;
public static int simpleHashAlgorithm(String s) {
    int hash = 0;
    char[] chars = s.toCharArray();
    for (char ch : chars) {
        hash += ch;
    }
    return padding(hash % modulus); // padding: ensure always minimum 3 digits
}
```

    Input: "ICTSkills-2015"
    Output: 950
    Input: "ICTSkills-2016"
Output: 960

## SHA-1 hashing examples

Observe differences between inputs and outputs

## ICTSkills-2015 c83007996185ec1269ae9d1e78ef12d51ac0b078

ICTSkills-2016 33f87c1b7e03bc33b34e62313a638123260ca0b0

## Sign your app

Signing


## Sign your app

## Verifying



## Symmetric Key Encryption

Example using one-time pad

## Symmetric Key Encryption

## One Time Pad

Key same length as plaintext

Exclusive OR denoted by $\oplus$.

- $m$ denotes plaintext or message text
- k denotes key

| a | b | $\mathrm{a} \oplus \mathrm{b}$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

- c denotes the cipher text or encrypted message
- $\mathrm{c}=\mathrm{m} \oplus \mathrm{k}$

| m | 0 | 1 | 1 | 0 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| k | 1 | 0 | 1 | 1 | 0 | 0 |
| c | 1 | 1 | 0 | 1 | 1 | 1 |

## One Time Pad

Key same length as plaintext

Observe from table:

- $\mathrm{c}=\mathrm{m} \oplus \mathrm{k}$
- $\mathrm{m}=\mathrm{c} \oplus \mathrm{k}$


## One Time Pad

Why use XOR?

- Avoids leakage input data
- If either random variables R1 or R2 uniform
- Then R1 $\oplus$ R2 output uniform distribution
- Overcomes problem biased inputs



## One Time Pad

Encrypting with logical AND

| m 10011 | plaintext |
| :--- | :--- | :--- |
| k 10110 | key |

m\&\&k 10010 ciphertext

## Given only algorithm (\&\&) and ciphertext we now know that message text is 1??1?

## Key Exchange

Discovered independently by Diffie \& Hellman (Stanford) \& Malcolm Williamson (GCHQ)

## Diffie-Hellman

## Key Exchange

Uses One-Way Function


## One-Way function

## Key Exchange

## One-Way Function - underlying mathematical theory


prime modulus 17
generator 3

## Key Exchange

## One-Way Function - underlying mathematical theory



## Key Exchange

One-Way Function - underlying mathematical theory


Alice's \& Bob's shared secret key

## Key Exchange

Brian Williamson(1973), Diffie, Hellman (1976)

## Diffie-Hellman

- Public: g and p
a Private: Alice's exponent a, Bob's exponent b

- Alice computes $\left(g^{b}\right)^{a}=g^{b a}=g^{a b} \bmod p$
- Bob computes $\left(\mathrm{g}^{\mathrm{a}}\right)^{\mathrm{b}}=\mathrm{g}^{\text {ab }} \bmod \mathrm{p}$
$\square$ Use $K=g^{\text {ab }}$ mod $p$ as symmetric key


## RSA Encryption

Discovered by Rivest, Shamir, Adleman (RSA) \& Christopher Cocks (GCHQ)

## RSA

## RSA Encryption

public-private key pair

- Ron Rivest, Adi Shamir \& Leonard Adleman
- Key generator produces two components.
- The private (secret) key (SK) used to decrypt.
- The public key (PK) used to encrypt.
- Keys have inverse functionality.
- Encrypt with PK => decrypt with SK.
- Sign (encrypt) with SK => verify (decrypt) with PK.



# RSA Encryption 

Mathematical explanation

- Let modulus be 14 .
- Alice uses key generator to output public-private key pair.
- Gives (somehow) public key to Bob.
- Private key: $(11,14)$
- Public key: $(5,14)$
- There is a mathematical relationship between the 11 \& 5
- Brief explanation follows
- More detailed explanations referenced materials


# RSA Encryption 

Mathematical explanation

- Let modulus $Z$ be $p^{*} q$ where $p$, $q$ very large primes
- p \& q remain secret - trapdoor function
- Calculation $Z$ very easy
- Derivation p, q given $Z$ very hard
- Applying set rules using p, q (see ref material):
- Choose number e.
- (e, Z) the public key
- Choose secret number d
- (d, Z) the private key.


## RSA Encryption

Plaintext m: Ciphertext c

- Encryption:

$$
c=m^{e} \quad \bmod \quad Z
$$

- Decryption:

$$
m=c^{d} \quad \bmod \quad Z
$$

## RSA Encryption

Mathematical explanation

Bob encrypts plaintext 2 using public key $(5,14)$ :

$$
\begin{aligned}
c & =2^{5} \bmod 14 \\
& =4
\end{aligned}
$$

Hint: Use Paul Trow's online modular arithmetic calculator: https://goo.gl/MhfqcO

## RSA Encryption

Mathematical explanation

Alice uses private key $(11,14)$ to decrypt $c=4$ :

$$
\begin{aligned}
m & =4^{11} \text { mode } 14 \\
& =2
\end{aligned}
$$

## RSA Encryption

Mathematical explanation

Alice uses private key $(11,14)$ to sign (encrypt) a message $m=2$ :

$$
\begin{aligned}
c & =2^{11} \text { mode } 14 \\
& =4
\end{aligned}
$$

Bob verifies signed message 4 using public key $(5,14)$ :

$$
\begin{aligned}
m & =4^{5} \bmod 14 \\
& =2(\text { verified })
\end{aligned}
$$

## RSA Encryption

The importance of $\mathbf{p} \& \mathbf{q}$

The modulus $\mathbf{Z}$ is the product of $\mathbf{p} \& \mathbf{q}$.

- Individual numbers p \& q required in calculation of:
- e the public key exponent (e, Z)
- d the private key (d, Z)
- $\mathbf{Z}$ is public.
- Therefore: if $Z$ factorizable then boom goes eCommerce and lots more besides.


## References

## Encryption \& Digital Signing

1. Official documentation: Sign Your App
http://bit.ly/2eIDwQE [Accessed 2016-10-19]
2. Khan Academy: Journey into Cryptography
http://bit.ly/2eIyBPO
[Accessed 2016-10-27]
3. Mathematical Cryptosystems (1 of 2): Symmetric Cryptography
http://bit.ly/2ey52Ti
[Accessed 2016-10-27]

## References

## Encryption \& Digital Signing

4. Mathematical Cryptosystems (2 of 2): Symmetric Cryptography http://bit.ly/2eOTpFV
[Accessed 2016-10-27]
5. KhanAcademy: Digital Signatures High-level Description http://bit.ly/2eUCT5I
[Accessed 2016-10-27]
6.Public Key Encrpyion \& Digital Signature: How do they work?
https://goo.gl/lHHsRo
[Accessed 2016-10-28]

## References

## Encryption \& Digital Signing

7. How PGP Works

https://goo.gl/2UKnR5
[Accessed 2016-10-28] 8. Diffie-Hellman key exchange
https://goo.gl/lNXGB8
[Accessed 2016-11-03]
9. How RSA and PKI works and the math behind it
http://bit.ly/2fOnvfs
[Accessed 2016-11-13]

## References

Encryption \& Digital Signing
10. Stackoverflow: Why is XOR used on Cryptography?
https://goo.gl/xD37ff
[Accessed 2016-11-15]

Except where otherwise noted, this content is licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

Waterford Institute of Technology
astmono tecneoulcorma phont Larce

