Mobile Application Development
Content Providers

Waterford Institute of Technology

October 26, 2016

John Fitzgerald

Waterford Institute of Technology,

Mobile Application Development Content Providers

1/33

Content Providers

Learning Objectives

= Brief review SQLite.

= Introduce Content Provider.

= Explain how to implement in MyRentSQLite app.
= Initial brief introduction to Android services.

= Running service method on worker thread.

= Using service to exercise SQLite functionality.

= Writing a test app to access MyRent content provider.

Waterford Institute of Technology, Mobile Application Development Content Providers

SQLite

An embedded database engine

= MyRentSQLite app persists data.

= Data still persists when app shut down.
= Local copy data allows offline processing.
= SQLite database functions as cache.

= Later we put data on cloud.

= In lab we simulate cloud.

Waterford Institute of Technology, Mobile Application Development Content Providers

dand0Id>

e
W

e

Content Providers

An interface to application data

! @ MyRent

= Presently data inaccessible to other apps.
= ContentProvider: MyRent data accessible.

= Other apps on device may access data.

Waterford Institute of Technology, Mobile Application Development Content Providers 4/33

Content Providers

An interface to application data

= Presently APP1 SQLite database inaccessible to APP2

T hea T h

Update()

Delate()

APP Database

N —

Waterford Institute of Technology, Mobile Application Development Content Providers 5/33

Content Providers

An interface to application data

= Content Provider facilitates APP2 access APP1 data

(o

Delete()

o

i
\al-
\{‘ Update()
\+

APP Database

N

Waterford Institute of Technology, Mobile Application Development Content Providers 6/33

Content Providers

Basics

In the case of our lab, a content provider:
= Manages access to MyRent data.
= Intended for use by other apps.

= Presents data as tables similar to those in SQLite dbase.

Waterford Institute of Technology, Mobile Application Development Content Providers 7/33

Content Providers

Refactored packaging and new classes

Additional classes:

= ResidenceContract: constants

= ResidenceProvider

v [Edsglite.myrentsglite
» Edactivities
> [Eapp
v Eicloud
€ & ResidenceCloud
» [EImodels
v [dproviders
(£) = DbHelper

n Residence(]oud: simulation (€ @ ResidenceContract

= RefreshResidenceService

(€ & ResidenceProvider
v [dservices
(€ & RefreshResidenceService

Waterford Institute of Technology,

Mobile Application Development Content Providers

8/33

Content Providers

Implementation

= Best practice: store constants in separate class

package sqlite.myrentsqlite.providers;
public class ResidenceContract

static final String TAG = "ResidenceContract";
static final String DATABASE_NAME = "residences.db";

public class Column

{
public static final String ID = BaseColumns._ID;
public static final String UUID = "uuid";
public static final String GEOLOCATION = "geolocation";
public static final String DATE = "date";

Waterford Institute of Technology, Mobile Application Development Content Providers 9/33

Content Providers

Implementation

= Refactor DbHelper.
= CRUD methods moved to ContentProvider.

public class DbHelper extends SQLiteOpenHelper

static final String TAG = "DbHelper";
Context context;
. public DbHelper(Context context) {...}

@0verride
.+ public void onCreate(SQLiteDatabase db) {...}

GIVE S P 54
@0verride
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {...}

Waterford Institute of Technology, Mobile Application Development Content Providers 10/33

Content Providers

Implementation

= CRUD methods moved to ContentProvider.

public class ResidenceProvider extends ContentProvider
{
private static final String TAG = "ResidenceProvider";
private DbHelper dbHelper;

static {...}

@Override

public boolean onCreate() {...}
/¥% %/

e{...}

public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {...}

e{...}

public String getType(Uri uri) { return null; }

e{...}

public Uri insert(Uri uri, ContentValues values) {...}

@Override

public int delete(Uri uri, String selection, String[] selectionArgs) {...}

@Override

public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {...}

private static final UriMatcher uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);

Waterford Institute of Technology, Mobile Application Development Content Providers

11/33

Content Providers

Implementation

= Create the table in DbHelper.onCreate

@0verride
public void onCreate(SQLiteDatabase db) {

db.execSQL("CREATE TABLE "
ResidenceContract.TABLE_RESIDENCES + " ("
ResidenceContract.Column.ID + " INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,"
ResidenceContract.Column.UUID + " TEXT,"
ResidenceContract.Column.GEOLOCATION + " TEXT,"
ResidenceContract.Column.DATE + " TEXT,"
ResidenceContract.Column.RENTED + " TEXT,"
ResidenceContract.Column.TENANT + " TEXT,"
ResidenceContract.Column.Z0OM + " TEXT,"
ResidenceContract.Column.PHOTO + " TEXT"

"))

+

o+ o+

Waterford Institute of Technology, Mobile Application Development Content Providers 12/33

Providers
Manifest

= Requirement: declare provider in manifest

<provider
android:name="sqlite.myrentsqlite.providers.ResidenceProvider"
android:authorities="sqlite.myrentsqlite.providers.ResidenceProvider"
android:exported="true"/>

// This attribute necessary to expose database to other apps.
android:exported="true"

Waterford Institute of Technology, Mobile Application Development Content Providers 13/33

Content Providers

Implementation

= Simulate the cloud.

public class ResidenceCloud
{

public static Residence residence() {
return new Residence("52.4444,-7.187162", true, "Barney Gumble", 12.8, "photol.jpeg");
}

public static List<Residence> residences() {
ArraylList<Residence> list = new ArraylList<>();
list.add(new Residence("52.4444,-7.187162", true, "Barney Gumble", 12.0, "photol.jpeg"));
¢ list.add(new Residence("52.3333,-7.187162", true, "Ned Flanders", 16.0, "photo2.jpeg"));

return list;

Waterford Institute of Technology,

Mobile Application Development Content Providers 14/33

Services

An introduction - dedicated topic towards end course

= Fundamental building blocks of Android
= No user interface

= Block of code running in background

= Independent of activities

= Start & stop - come & go

Waterford Institute of Technology, Mobile Application Development Content Providers

15/33

Services

Have well-defined lifecycle

Destroyed

onCreate()

onStart() onDestroy()

Running

Waterford Institute of Technology, Mobile Application Development Content Providers 16/33

Services
Manifest

= Requirement: declare service in manifest
= Otherwise will not be called

= No warning (or hard to detect if exists)

<service android:name="sqlite.myrentsqlite.services.RefreshResidenceService" /> J

Waterford Institute of Technology, Mobile Application Development Content Providers 17/33

Services

RefreshResidenceService a subclass of IntentService

public class RefreshResidenceService extends IntentService {

public RefreshResidenceService() {
super("RefreshResidenceService");
}

public RefreshResidenceService(String name) {
super(name);
}

@0verride

protected void onHandleIntent(Intent intent) {
String value = intent.getStringExtra(REFRESH);
switch (value) {

Waterford Institute of Technology, Mobile Application Development Content Providers

18/33

Services

Starting a service

= RefreshResidenceService subclass IntentService
= startService starts service

= Intent message determines service functionality invoked

/*%
* Start a RefreshResidence service, passing the intent message ADD_RESIDENCE
* This determines what functionality is invoked in the service.
*/
private void addResidence() {
Intent intent = new Intent(getBaseContext(), RefreshResidenceService.class);

intent .putExtra(RefreshRes idenceService.REFRESH, RefreshResidenceService .ADD_RESIDENCE);

startService(intent);

putExtra(RefreshResidenceService .REFRESH,
RefreshResidenceService.ADD_RES IDENCE);

Waterford Institute of Technology, Mobile Application Development Content Providers

19/33

Services

IntentService

= [ntentService.onHandlelntent runs on worker thread.

= Service auto stops when work done.

// This method runs on worker thread
@0verride
protected void onHandleIntent(Intent intent) {
String value = intent.getStringExtra(REFRESH);
switch (value) {
case ADD_RESIDENCE:
addResidence(new Residence());
break;

Waterford Institute of Technology, Mobile Application Development Content Providers

20/33

Services

IntentService

= [IntentService.onStartCommand runs on Ul thread.

// This method runs on Ul thread
int onStartCommand (Intent intent, int flags, int startId)

{

String value = intent.getStringExtra(REFRESH);
switch (value) {

Waterford Institute of Technology, Mobile Application Development Content Providers

21/33

ContentProvider

How to create ResidenceProvider

ResidenceProvider subclasses abstract class ContentProvider.

= Implement methods, example insert(), update(), delete().
= Declare Uri CONTENT_URI in ResidenceContract.

= Declare content provider in manifest.

Waterford Institute of Technology, Mobile Application Development Content Providers 22/33

ContentProvider
Uniform Resource Identifier (URI)

= Objects within app share same address space.

= May refer to each other using variable names.

= Other app objects do not recognize other address spaces.
= URI used to locate content provider.

Waterford Institute of Technology, Mobile Application Development Content Providers 23/33

ContentProvider URI

Defined in ResidenceContract

URI Components:

= (1) : Mandatory component
= (2) : Defined in ResidenceContract
= conventionally name provider class

= (3) : The data set
= (4) : Record selected (optional)

content:/sqlite.myrentsqlite.providers.ResidenceProvider/tableResidences/2

T T .

(1) content (2) authority (3)data (4) rowld

Waterford Institute of Technology, Mobile Application Development Content Providers 24/33

Content Providers

ContentProviderTest application

A simple test app to read list residences

= MyRentSQLite: generate the SQLite database.
= In test app use data URI to obtain cursor.

= Cursor is set rows + pointer to access these.
= Facilitates traversal (iterating) rows data.

= Use cursor to initialize local Residence model object.

Waterford Institute of Technology, Mobile Application Development Content Providers 25/33

MyRentSQLite app

Insert (add) Residence record

Approach differs on integration content provider:

Initiate add residence from gui.
Starts refresh residence service.
Creates ContentValues object.

Populates object with Residence state.

Uses URI to to identify target of database write.

Waterford Institute of Technology, Mobile Application Development Content Providers

26/33

MyRentSQLite app

Insert (add) Residence record - starts refresh residence service

/xx
x Start a RefreshResidence service, passing the intent message
ADD_RESIDENCE
* This determines what functionality is invoked in the service.
*/
private void addResidence() {
Intent intent =
new Intent(getBaseContext(), RefreshResidenceService.class);
intent.putExtra(RefreshResidenceService.REFRESH,
RefreshResidenceService.ADD_R.ESIDENCE);
startService(intent);

}

Waterford Institute of Technology, Mobile Application Development Content Providers 27/33

MyRentSQLite app

Insert (add) Residence record - creates ContentValues object in RefreshResidenceService

private void addResidence(Residence residence) {
ContentValues values = new ContentValues();

Waterford Institute of Technology, Mobile Application Development Content Providers 28/33

MyRentSQLite app

Insert (add) Residence record - populates ContentValues with Residence object state

private void addResidence(Residence residence) {
ContentValues values = new ContentValues();

values.put(ResidenceContract.Column.UUID, residence.uuid.toString());
values.put(ResidenceContract.Colu.mn.GEOLUCATIUN, residence.geolocation);

Waterford Institute of Technology, Mobile Application Development Content Providers 29/33

MyRentSQLite app

Insert (add) Residence record - uses URI to to identify target of database write

Uri uri = getContentResolver()
.insert(ResidenceContract.CONTENT_URI, values);

Waterford Institute of Technology, Mobile Application Development Content Providers 30/33

Content Providers

ContentProviderTest application

List<Residence> residences = new ArrayList<Residence>();
try {
Cursor cursor = getContentResolver()

.query(ResidenceContract.CONTENT_URI, null, null, null, null);
if (cursor.moveToFirst()) {

int columnIndex = 1; // skip column 0, the primary key (id)
do {

Residence residence = new Residence();

residence.uuid = UUID.fromString(cursor.getString(columnIndex++));
residence.geolocation = cursor.getString(columnIndex++);

éélumnIndex = 1; // reset to 1 because skipping primary key

residences.add(residence);
} while (cursor.moveToNext());

cursor.close();
} catch (Exception e){}

Waterford Institute of Technology, Mobile Application Development Content Providers 31/33

Content Providers

Summary

= Content provider exposes data to other apps.

= SQLite package and file structure best practice.

= Android service lifecycle, how to start and stop.

= Exercises service functionality on worker thread.

= Use of URI to identify centrally located data.

= Demo use test app to access MyRentSQLite generated data.

Waterford Institute of Technology, Mobile Application Development Content Providers 32/33

References

Services

1. Official documentation: Services

https://developer.android.com/guide/components/
services.html [Accessed 2016-10-25]

2. Official documentation: Content Provider

https://developer.android.com/guide/topics/providers/
content-providers.html [Accessed 2016-10-26]

Waterford Institute of Technology, Mobile Application Development Content Providers 33/33

https://developer.android.com/guide/components/services.html
https://developer.android.com/guide/components/services.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html

Ol

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

Waterford Institute of Technology o eLearning

ST TECHEOLAIOCHTA PHORT LARCE support unit

Waterford Institute of Technology, Mobile Application Development Content Providers 34/33

