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Content Providers

Learning Objectives

= Brief review SQLite.

= Introduce Content Provider.

= Explain how to implement in MyRentSQLite app.
= Initial brief introduction to Android services.

= Running service method on worker thread.

= Using service to exercise SQLite functionality.

= Writing a test app to access MyRent content provider.
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SQLite

An embedded database engine

= MyRentSQLite app persists data.

= Data still persists when app shut down.
= Local copy data allows offline processing.
= SQLite database functions as cache.

= Later we put data on cloud.

= In lab we simulate cloud.
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Content Providers

An interface to application data

! @ MyRent

= Presently data inaccessible to other apps.
= ContentProvider: MyRent data accessible.

= Other apps on device may access data.
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Content Providers

An interface to application data

= Presently APP1 SQLite database inaccessible to APP2
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Content Providers

An interface to application data

= Content Provider facilitates APP2 access APP1 data
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Content Providers

Basics

In the case of our lab, a content provider:
= Manages access to MyRent data.
= Intended for use by other apps.

= Presents data as tables similar to those in SQLite dbase.
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Content Providers

Refactored packaging and new classes

Additional classes:

= ResidenceContract: constants

= ResidenceProvider

v [Edsglite.myrentsglite
» Edactivities
> [Eapp
v Eicloud
€ & ResidenceCloud
» [EImodels
v [dproviders
(£) = DbHelper

n Residence(]oud: simulation (€ @ ResidenceContract

= RefreshResidenceService

(€ & ResidenceProvider
v [dservices
(€ & RefreshResidenceService
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Content Providers

Implementation

= Best practice: store constants in separate class

package sqlite.myrentsqlite.providers;
public class ResidenceContract

static final String TAG = "ResidenceContract";
static final String DATABASE_NAME = "residences.db";

public class Column

{
public static final String ID = BaseColumns._ID;
public static final String UUID = "uuid";
public static final String GEOLOCATION = "geolocation";
public static final String DATE = "date";
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Content Providers

Implementation

= Refactor DbHelper.
= CRUD methods moved to ContentProvider.

public class DbHelper extends SQLiteOpenHelper

static final String TAG = "DbHelper";
Context context;
. public DbHelper(Context context) {...}

@0verride
.+ public void onCreate(SQLiteDatabase db) {...}

GIVE S P 54
@0verride
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {...}
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Content Providers

Implementation

= CRUD methods moved to ContentProvider.

public class ResidenceProvider extends ContentProvider
{
private static final String TAG = "ResidenceProvider";
private DbHelper dbHelper;

static {...}

@Override

public boolean onCreate() {...}
/¥% %/

e{...}

public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {...}

e{...}

public String getType(Uri uri) { return null; }

e{...}

public Uri insert(Uri uri, ContentValues values) {...}

@Override

public int delete(Uri uri, String selection, String[] selectionArgs) {...}

@Override

public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {...}

private static final UriMatcher uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
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Content Providers

Implementation

= Create the table in DbHelper.onCreate

@0verride
public void onCreate(SQLiteDatabase db) {

db.execSQL("CREATE TABLE "
ResidenceContract.TABLE_RESIDENCES + " ("
ResidenceContract.Column.ID + " INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,"
ResidenceContract.Column.UUID + " TEXT,"
ResidenceContract.Column.GEOLOCATION + " TEXT,"
ResidenceContract.Column.DATE + " TEXT,"
ResidenceContract.Column.RENTED + " TEXT,"
ResidenceContract.Column.TENANT + " TEXT,"
ResidenceContract.Column.Z0OM + " TEXT,"
ResidenceContract.Column.PHOTO + " TEXT"

"))

+

o+ o+
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Providers
Manifest

= Requirement: declare provider in manifest

<provider
android:name="sqlite.myrentsqlite.providers.ResidenceProvider"
android:authorities="sqlite.myrentsqlite.providers.ResidenceProvider"
android:exported="true"/>

// This attribute necessary to expose database to other apps.
android:exported="true"
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Content Providers

Implementation

= Simulate the cloud.

public class ResidenceCloud
{

public static Residence residence() {
return new Residence("52.4444,-7.187162", true, "Barney Gumble", 12.8, "photol.jpeg");
}

public static List<Residence> residences() {
ArraylList<Residence> list = new ArraylList<>();
list.add(new Residence("52.4444,-7.187162", true, "Barney Gumble", 12.0, "photol.jpeg"));
¢ list.add(new Residence("52.3333,-7.187162", true, "Ned Flanders", 16.0, "photo2.jpeg"));

return list;
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Services

An introduction - dedicated topic towards end course

= Fundamental building blocks of Android
= No user interface

= Block of code running in background

= Independent of activities

= Start & stop - come & go
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Services

Have well-defined lifecycle

Destroyed

onCreate()

onStart() onDestroy()

Running

Waterford Institute of Technology, Mobile Application Development Content Providers 16/33



Services
Manifest

= Requirement: declare service in manifest
= Otherwise will not be called

= No warning (or hard to detect if exists)

<service android:name="sqlite.myrentsqlite.services.RefreshResidenceService" /> J
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Services

RefreshResidenceService a subclass of IntentService

public class RefreshResidenceService extends IntentService {

public RefreshResidenceService() {
super("RefreshResidenceService");
}

public RefreshResidenceService(String name) {
super(name);
}

@0verride

protected void onHandleIntent(Intent intent) {
String value = intent.getStringExtra(REFRESH);
switch (value) {
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Services

Starting a service

= RefreshResidenceService subclass IntentService
= startService starts service

= Intent message determines service functionality invoked

/*%
* Start a RefreshResidence service, passing the intent message ADD_RESIDENCE
* This determines what functionality is invoked in the service.
*/
private void addResidence() {
Intent intent = new Intent(getBaseContext(), RefreshResidenceService.class);

intent .putExtra(RefreshRes idenceService.REFRESH, RefreshResidenceService .ADD_RESIDENCE);

startService(intent);

putExtra(RefreshResidenceService .REFRESH,
RefreshResidenceService.ADD_RES IDENCE);

Waterford Institute of Technology, Mobile Application Development Content Providers

19/33



Services

IntentService

= [ntentService.onHandlelntent runs on worker thread.

= Service auto stops when work done.

// This method runs on worker thread
@0verride
protected void onHandleIntent(Intent intent) {
String value = intent.getStringExtra(REFRESH);
switch (value) {
case ADD_RESIDENCE:
addResidence(new Residence());
break;
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Services

IntentService

= [IntentService.onStartCommand runs on Ul thread.

// This method runs on Ul thread
int onStartCommand (Intent intent, int flags, int startId)

{

String value = intent.getStringExtra(REFRESH);
switch (value) {
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ContentProvider

How to create ResidenceProvider

ResidenceProvider subclasses abstract class ContentProvider.

= Implement methods, example insert(), update(), delete().
= Declare Uri CONTENT_URI in ResidenceContract.

= Declare content provider in manifest.
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ContentProvider
Uniform Resource Identifier (URI)

= Objects within app share same address space.

= May refer to each other using variable names.

= Other app objects do not recognize other address spaces.
= URI used to locate content provider.
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ContentProvider URI

Defined in ResidenceContract

URI Components:

= (1) : Mandatory component
= (2) : Defined in ResidenceContract
= conventionally name provider class

= (3) : The data set
= (4) : Record selected (optional)

content:/sqlite.myrentsqlite.providers.ResidenceProvider/tableResidences/2

T T .

(1) content (2) authority (3)data  (4) rowld
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Content Providers

ContentProviderTest application

A simple test app to read list residences

= MyRentSQLite: generate the SQLite database.
= In test app use data URI to obtain cursor.

= Cursor is set rows + pointer to access these.
= Facilitates traversal (iterating) rows data.

= Use cursor to initialize local Residence model object.
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MyRentSQLite app

Insert (add) Residence record

Approach differs on integration content provider:

Initiate add residence from gui.
Starts refresh residence service.
Creates ContentValues object.

Populates object with Residence state.

Uses URI to to identify target of database write.
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MyRentSQLite app

Insert (add) Residence record - starts refresh residence service

/xx
x Start a RefreshResidence service, passing the intent message
ADD_RESIDENCE
* This determines what functionality is invoked in the service.
*/
private void addResidence() {
Intent intent =
new Intent(getBaseContext(), RefreshResidenceService.class);
intent.putExtra(RefreshResidenceService.REFRESH,
RefreshResidenceService.ADD_R.ESIDENCE);
startService(intent);

}
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MyRentSQLite app

Insert (add) Residence record - creates ContentValues object in RefreshResidenceService

private void addResidence(Residence residence) {
ContentValues values = new ContentValues();
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MyRentSQLite app

Insert (add) Residence record - populates ContentValues with Residence object state

private void addResidence(Residence residence) {
ContentValues values = new ContentValues();

values.put(ResidenceContract.Column.UUID, residence.uuid.toString());
values.put(ResidenceContract.Colu.mn.GEOLUCATIUN, residence.geolocation);
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MyRentSQLite app

Insert (add) Residence record - uses URI to to identify target of database write

Uri uri = getContentResolver()
.insert(ResidenceContract.CONTENT_URI, values);

Waterford Institute of Technology, Mobile Application Development Content Providers 30/33



Content Providers

ContentProviderTest application

List<Residence> residences = new ArrayList<Residence>();
try {
Cursor cursor = getContentResolver()

.query(ResidenceContract.CONTENT_URI, null, null, null, null);
if (cursor.moveToFirst()) {

int columnIndex = 1; // skip column 0, the primary key (id)
do {

Residence residence = new Residence();

residence.uuid = UUID.fromString(cursor.getString(columnIndex++));
residence.geolocation = cursor.getString(columnIndex++);

éélumnIndex = 1; // reset to 1 because skipping primary key

residences.add(residence);
} while (cursor.moveToNext());

cursor.close();
} catch (Exception e){}
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Content Providers

Summary

= Content provider exposes data to other apps.

= SQLite package and file structure best practice.

= Android service lifecycle, how to start and stop.

= Exercises service functionality on worker thread.

= Use of URI to identify centrally located data.

= Demo use test app to access MyRentSQLite generated data.
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