
The Android Stack

Overview
• The Android

operating system
is like a cake
consisting of
various layers.

• Each layer has its
own
characteristics
and purpose—
but the layers are
not always
cleanly separated
and often seep
into one another.

Android & Linux
• Although Android is based on linux, it is not just another flavour of

Linux, in the way that Ubuntu, Fedora, or Red Hat are.

• Many things you’d expect from a typical Linux distribution aren’t
available in Android, such as the X11 window manager, the ability to
add a person as a Linux user or even the glibc standard C library.

• On the other hand, Android adds quite a bit to the Linux kernel,
such as

• an improved power management that is well-suited for mobile
battery-powered devices,

• a very fast interprocess communication mechanisms

• mechanisms for sand‐ boxing applications so they are isolated
from one another.

• Portable

• Most low-level parts of Linux have been written in fairly portable C code, which allows for
third parties to port Android to a variety of devices.

• Secure

• Linux is a highly secure system, having been tried and tested through some very harsh
environments over the decades.

• Android relies heavily on Linux for security, and all Android applications run as separate
Linux processes with permissions set by the Linux system, passing many security
concerns to the underlying Linux system.

• The kernel is the sole enforcer of Android permissions, providing a simple, powerful,
security mechanism. It also allows Android apps access to native code, such as fast C
implementations of various libraries via the Java Native Interface.

• Features

• The Linux kernel comes with a range of features. Android leverages many of them, e.g.
support for memory and power management, networking and radio functionality.

Linux Kernel

Native Layer

• The native libraries are C/C++ libraries. Their primary job
is to support the Android Application Framework layer

• Some of these libraries are purpose-built for the Android
OS, whereas others are often taken from the open source
community in order to complete the operating system.

• Binder: A very fast inter-process communication mechanism that allows for one Android
app to talk to another.

• Framework libraries: Various libraries designed to support system services, such as
location, media, package installer, telephony, WiFi, voip, and so on.

• Webkit: A fast web-rendering engine used by Safari, Chrome, and other browsers.

• SQLite: A full-featured SQL database that the Android app framework exposes to
applications.

• Apache Harmony: An open source implementation of Java libraries.

• OpenGL: 3D graphics libraries.

• OpenSSL: The secure socket layer, allowing for secure point-to-point connectivity.

Native Daemons
• Native daemons are executable code that usually runs to support some kind of

system service. Prominent examples:

• Service Manager (servicemanager): The umbrella process running all other
framework services. It is the most critical native daemon.

• Radio interface layer daemon (rild): Responsible for supporting the
telephony functionality via GSP or CDMA, usually.

• Installation daemon (installd): Supports management of apps, including
installation, upgrades, as well as granting of permissions.

• Media server (mediaserver): Supports camera, audio, and other media
services.

• Android Debug Bridge (adbd): Supports developer connectivity from your
PC to the device (including the emuator) so that you can develop apps for
Android.

Application Frameworks

• The application framework is a rich environment that provides numerous libraries
and services to help the app developer

• This is the best-documented and most extensively covered part of the platform
because it is this layer that empowers developers to get applications to the market.

• In the application framework layer, there are numerous Java libraries specifically
built for Android. These purpose-built Android classes live in android.* packages.

• There are also most of the standard Java libraries, such as java.lang.*, java.utils.*,
java.io.*, java.net.*, etc, which behave as documented in the oracle documentation

• You will also find many services (or managers) that provide the ecosystem of
capabilities your application can tap into, such as location, sensors, WiFi,
telephony, etc…

JVM vs Dalvik

• In Java, you write your Java source file, compile it into Java
byte code using the Java compiler, and then run this byte
code on the Java VM.

• In Android you write the Java source file, and you still
compile it to Java byte code using the same Java compiler.

• But at that point, you recompile it once again to Dalvik byte
code using the Dalvik compiler - producing a DEX file

• It is this Dalvik byte code - DEX Code - that is then
executed on the Dalvik

Dex

• ART, which stands for Android Runtime, handles app execution in a
fundamentally different way from Dalvik.

• The big shift that ART brings, is that instead of being a Just-in-Time
(JIT) compiler, it now compiles application code Ahead-of-Time (AOT).

• The runtime goes from having to compile from bytecode to native
code each time you run an application, to having it to do it only once,
and any subsequent execution from that point forward is done from
the existing compiled native code.

• ART is compatible with Dalvik’s existing byte-code format (“dex”).

• From a developer’s perspective, there are no changes at all in
terms of having to write applications for one or the other runtime
and no need to worry about compatibilities.

Applications

• An application is a single file. We call it an Android
application package, or APK for short.

• It is a ZIP file that you can unzip and look inside using any
archiving tool

Signed APK Generation
• Your APK file also contains a digital

signature certifying that you are the
author of this application.
Signatures are in the META-INF
folder.

• Android applications must be
signed before they can be installed
on a device.

Components of an APK (1)
• Android Manifest file

• This is the main file that provides the big picture about your
app—all of its components, permissions, version, and
minimum API level needed to run it.

• Dalvik executable

• This is all your Java source code compiled down to a Dalvik
executable. The Dalvik executable is the code that runs your
application. It is located in a file called classes.dex.

• Resources

• Resources are everything that is not code. Your application
may contain a number of images and audio/video clips, as
well as numerous XML files describing layouts, language
packs, and so on. Collectively, these items are the resources.

• Native libraries

• Optionally, your application may include some native code,
such as C/C++ libraries. These libraries could be packaged
together with your APK file.

Android
Stack

• Which
part
should we
learn?

Android
Stack

• Almost exclusively - the Application Framework

• Learning Resources?

developer.android.com

http://developer.android.com

• Latest version of documentation can be downloaded locally
via the SDK Manager

• Can then be browsed as a static web site

Design

Develop

Develop/Training

Develop/API Guides

Develop/Reference

Develop/tools

Recommended Texts

