Delegation E

A> A

Delegation

A class can implement an
Interface Base by delegating
all of its public members to a

specified object

Implementation by Delegation

The Delegation pattern has proven to be a good alternative to implementation inheritance, and

Kotlin supports it natively requiring zero boilerplate code. A class Derived can implement an

interface Base by delegating all of its public members to a specified object:

interface Base { ’
fun print()

¥

class BaseImpl(val x: Int) : Base {
override fun print() { print(x) }

}

class Derived(b: Base) : Base by b
fun main() {

val b = BaseImpl(10)
Derived(b).print()

The by-clause in the supertype list for Derived indicates that b will be stored internally in

objects of Derived and the compiler will generate all the methods of Base that forward to
b .

Overriding a member of an interface implemented by delegation

Overrides work as you might expect: the compiler will use your override implementations

instead of those in the delegate object. If we were to add override fun printMessage()

1 print("abc") } to Derived, the program would print "abc" instead of "10" when

printMessage is called:

interface Base { >
fun printMessage()
fun printMessagelLine()

¥

class BaseImpl(val x: Int) : Base {
override fun printMessage() { print(x) }
override fun printMessageLine() { println(x) }

}

class Derived(b: Base) : Base by b {
override fun printMessage() { print("abc") }

}

fun main() {
val b = BaseImpl(10)
Derived(b).printMessage()
Derived(b).printMessageLine()

Note, however, that members overridden in this way do not get called from the members of

the delegate object, which can only access its own implementations of the interface members:

interface Base { ’
val message: String
fun print()

}

class BaseImpl(val x: Int) : Base {
override val message = "BaseImpl: x = $x"
override fun print() { println(message) }

}

class Derived(b: Base) : Base by b {
// This property is not accessed from b's implementation of print
override val message = "Message of Derived"

}

fun main() {
val b = BaseImpl(10)
val derived = Derived(b)
derived.print()
println(derived.message)

