Sealed H

Classes

Sealed Classes

Sealed classes are used for
representing restricted class
hierarchies



Sealed Classes

Sealed classes are used for representing restricted class hierarchies, when a value can have one of
the types from a limited set, but cannot have any other type. They are, in a sense, an extension of
enum classes: the set of values for an enum type is also restricted, but each enum constant exists

only as a single instance, whereas a subclass of a sealed class can have multiple instances which

can contain state.

To declare a sealed class, you put the sealed modifier before the name of the class. A sealed

class can have subclasses, but all of them must be declared in the same file as the sealed class

itself. (Before Kotlin 1.1, the rules were even more strict: classes had to be nested inside the

declaration of the sealed class).

sealed class Expr

data class Const(val number: Double) : Expr()

data class Sum(val el: Expr, val e2: Expr) : Expr()
object NotANumber : Expr()



A sealed class is abstract by itself, it cannot be instantiated directly and can have abstract

members.

Sealed classes are not allowed to have non-private constructors (their constructors are private

by default).

Note that classes which extend subclasses of a sealed class (indirect inheritors) can be placed

anywhere, not necessarily in the same file.

The key benefit of using sealed classes comes into play when you use them in a when expression. If

it's possible to verify that the statement covers all cases, you don't need to add an else clause to

the statement. However, this works only if you use when as an expression (using the result) and

not as a statement.

fun eval(expr: Expr): Double = when(expr) {
is Const —> expr.number
is Sum —> eval(expr.el) + eval(expr.e2)
NotANumber —> Double.NaN
// the "else clause is not required because we've covered all the cases



