Data Classes H

Data Classes

Classes w hose main
purpose Is to hold data.

Data Classes

We frequently create classes whose main purpose is to hold data. In such a class some standard
functionality and utility functions are often mechanically derivable from the data. In Kotlin, this is

called a data class and is marked as data :

data class User(val name: String, val age: Int)

The compiler automatically derives the following members from all properties declared in the

primary constructor:

— equals() / hashCode() pair;
— toString() ofthe form "User(name=John, age=42)" ;

— componentN() functions corresponding to the properties in their order of declaration;

— copy() function (see below).

To ensure consistency and meaningful behavior of the generated code, data classes have to fulfill

the following requirements:

— The primary constructor needs to have at least one parameter;

— All primary constructor parameters need to be marked as val or var;

— Data classes cannot be abstract, open, sealed or inner;

Properties Declared in the Class Body

Note that the compiler only uses the properties defined inside the primary constructor for the
automatically generated functions. To exclude a property from the generated implementations,

declare it inside the class body:

data class Person(val name: String) {
var age: Int = 0

}

Only the property name will be used inside the toString() , equals() , hashCode() , and
copy() implementations, and there will only be one component function componentl() . While

two Person objects can have different ages, they will be treated as equal.

>

Person('"John")
Person("John")
10
20

val personl
val person2
personl.age
person2.age

Copying

It's often the case that we need to copy an object altering some of its properties, but keeping the

rest unchanged. This is what copy() function is generated for. For the User class above, its

implementation would be as follows:

fun copy(name: String = this.name, age: Int = this.age) = User(name, age)

his allows us to write:

val jack = User(name = "Jack", age = 1)
val olderJack = jack.copy(age = 2)

Data Classes and Destructuring Declarations

Component functions generated for data classes enable their use in destructuring declarations:

val jane = User("Jane", 35)
val (name, age) = jane
println("$name, $age years of age") // prints "Jane, 35 years of age"

Standard Data Classes ¢

The standard library provides Pair and Triple . In most cases, though, named data classes are

a better design choice, because they make the code more readable by providing meaningful names

for properties.

