Properties & E
Fields

Properties & rlelds

Kotlin properties and fields
offer a richer set of features
and variants over Java



Declaring Properties

Classes in Kotlin can have properties. These can be declared as mutable, using the var

keyword or read-only using the val keyword.

class Address {
var name: String = ...
var street: String
var city: String = ...
var state: String?
var zip: String = ...

To use a property, we simply refer to it by name, as if it were a field in Java:

fun copyAddress(address: Address): Address {
val result = Address() // there's no 'new' keyword in Kotlin
result.name = address.name // accessors are called
result.street = address.street

// E NN
return result



Getters and Setters

The full syntax for declaring a property is

var <propertyName>|[: <PropertyType>] [= <property_initializer>]
[<getter>]
[<setter>]

The initializer, getter and setter are optional. Property type is optional if it can be inferred from

the initializer (or from the getter return type, as shown below).

Examples:

var allByDefault: Int? // error: explicit initializer required, default getter and
var initialized = 1 // has type Int, default getter and setter



The full syntax of a read-only property declaration differs from a mutable one in two ways: it starts with

val instead of var and does not allow a setter:

val simple: Int? // has type Int, default getter, must be initialized in constructor
val inferredType = 1 // has type Int and a default getter

We can write custom accessors, very much like ordinary functions, right inside a property declaration.

Here's an example of a custom getter:

val 1sEmpty: Boolean
get() = this.size ==

A custom setter looks like this:

var stringRepresentation: String
get() = this.toString()
set(value) {
setDataFromString(value) // parses the string and assigns values to other properties

}



Backing Fields

Fields cannot be declared directly in Kotlin classes. However, when a property needs a backing

field, Kotlin provides it automatically. This backing field can be referenced in the accessors using
the field identifier:

var counter = 0 // Note: the initializer assigns the backing field directly
set(value) {

if (value >= 0) field = value

}

The field identifier can only be used in the accessors of the property.

A backing field will be generated for a property if it uses the default implementation of at least
one of the accessors, or if a custom accessor references it through the field identifier.

For example, in the following case there will be no backing field:

val isEmpty: Boolean
get() = this.size ==



Backing Properties

If you want to do something that does not fit into this "implicit backing field" scheme, you can

always fall back to having a backing property:

private var _table: Map<String, Int>? = null
public val table: Map<String, Int>

get() {
if (_table == null) {
_table = HashMap() // Type parameters are inferred
I3

return _table ?: throw AssertionError("'"Set to null by another thread")

In all respects, this is just the same as in Java since access to private properties with default

getters and setters is optimized so that no function call overhead is introduced.



Late-Initialized Properties and Variables

Normally, properties declared as having a non-null type must be initialized in the constructor.
However, fairly often this is not convenient. For example, properties can be initialized through
dependency injection, or in the setup method of a unit test. In this case, you cannot supply a non-

null initializer in the constructor, but you still want to avoid null checks when referencing the

property inside the body of a class.

To handle this case, you can mark the property with the lateinit modifier:

public class MyTest {
lateinit var subject: TestSubject

@SetUp fun setup() {
subject = TestSubject()

}

@Test fun test() {
subject.method() // dereference directly

}



