Kotlin Control &M
Flow

Switch Ststememt Flow Diagram

Control Flow

If, when, for and while
statements

If Expression

In Kotlin, 1f is an expression, i.e. it returns a value. Therefore there is no ternary operator

(condition ? then : else), because ordinary 1T works fine in this role.

// Traditional usage
var max = a
if (a < b) max = b

// With else
var max: Int

if (a > b) {
max = a
} else {
max = b
+

// As expression
val max = 1f (a > b) a else b

1T branches can be blocks, and the last expression is the value of a block:

val max = if (a > b) {
print("Choose a")
a

} else {
print("Choose b")
b

If you're using 1f as an expression rather than a statement (for example, returning its value or

assigning it to a variable), the expression is required to have an else branch.

When Expression

when replaces the switch operator of C-like languages. In the simplest form it looks like this

when (x) {
1 —> print("x == 1")
2 —> print("x == 2")
else —> { // Note the block
print("x is neither 1 nor 2")

}

when matches its argument against all branches sequentially until some branch condition is
satisfied. when can be used either as an expression or as a statement. If it is used as an
expression, the value of the satisfied branch becomes the value of the overall expression. If it
IS used as a statement, the values of individual branches are ignored. (Just like with 1f, each

branch can be a block, and its value is the value of the last expression in the block.)

The else branch is evaluated if none of the other branch conditions are satisfied. If when is
used as an expression, the else branch is mandatory, unless the compiler can prove that all

possible cases are covered with branch conditions (as, for example, with enum class entries

and sealed class subtypes).

If many cases should be handled in the same way, the branch conditions may be combined

with a commma:

when (x) {
@p 1 —> print("x == @ or X == u)
else —> print("otherwise")

We can use arbitrary expressions (not only constants) as branch conditions

when (x) {
parseInt(s) —> print("s encodes x")
else —> print("s does not encode x")

We can also check a value for being 1n or '1n a range or a collection:

when (x) {
in 1..10 —> print("x is in the range")
in validNumbers —> print("x is valid")
'in 10..20 —> print("x is outside the range")
else —> print("none of the above")

Another possibility is to check that a value 1s or !1s of a particular type. Note that, due to

smart casts, you can access the methods and properties of the type without any extra checks.

fun hasPrefix(x: Any) = when(x) {
is String —> x.startsWith("prefix")
else —> false

when can also be used as a replacement for an 1f-else 1f chain. If no argument is supplied,

the branch conditions are simply boolean expressions, and a branch is executed when its

condition is true:

when {
X.150dd() —> print("x is odd")
X.1sEven() —> print("x is even")
else —> print("x is funny")

For Loops

for loop iterates through anything that provides an iterator. This is equivalent to the

foreach loop inlanguages like C#. The syntax is as follows:

for (item in collection) print(item)

The body can be a block.

for (item: Int in ints) {

[/ .
}

As mentioned before, for iterates through anything that provides an iterator, i.e.

— has a member- or extension-function iterator() , whose return type
— has a member- or extension-function next() , and

— has a member- or extension-function hasNext() thatreturns Boolean .

All of these three functions need to be marked as operator .

To iterate over a range of numbers, use a range expression:

for (i in 1..3) {

println(i)

s

for (i in 6 downTo @ step 2) {
println(i)

s

A fTor loop over arange or an array is compiled to an index-based loop that does not create

an iterator object.

If you want to iterate through an array or a list with an index, you can do it this way:

for (i in array.indices) {
println(arrayl[il)

}

Alternatively, you can use the withIndex library function:

for ((index, value) in array.withIndex()) {
println("the element at $index is $value")

}

While Loops

while and do..while work as usual

while (x > 0) {
X__

}

do {
val y = retrieveData()
} while (y !'= null) // y is visible here!

Break and continue in loops

Kotlin supports traditional break and continue operators in loops.

