Rooms

Rooms =, |

The Room persistence
library provides an
abstraction layer over SQLite

Android Architecture
Components

A collection of libraries that help you design robust,
testable, and maintainable apps. Start with classes
for managing your Ul component lifecycle and
handling data persistence.

Now 1.0 stable

WATCH THE VIDEO GET STARTED

https://developer.android.com/topic/libraries/architecture

https://developer.android.com/topic/libraries/architecture

2 Major
Subsystems:

Room: a SQLite object
mapping library

Avoid boilerplate code and easily convert SQLite table data to Java
objects using Room. Room provides compile time checks of SQLite

statements and can return RxJava, Flowable and LiveData observables.

Manage your app's
ifecycle with ease

New lifecycle-aware components help you manage your activity and
fragment lifecycles. Survive configuration changes, avoid memory leaks
and easily load data into your Ul using LiveData, ViewModel,

LifecycleObserver and LifecycleOwner.

Handling lifecycles LiveData

Create a Ul that Build data objects that notify
automatically responds to views when the underlying
lifecycle events. database changes.

4 Independent ’ ’
ViewModel Room
Store Ul related data that Access your app's SQLite
isn't destroyed on app database with in-app objects
rotations. and compile-time checks.

- =

Room Persistence Library

The Room persistence library provides an abstraction layer over SQLite to allow fluent
database access while harnessing the full power of SQLite.

The library helps you create a cache of your app's data on a device that's running your app. This cache,

which serves as your app's single source of truth, allows users to view a consistent copy of key

information within your app, regardless of whether users have an internet connection.

4)
Room Database

_ W,

Persist changes
Get DAO back to db
’ J ‘ get | set field values

4)
Rest of The App

Ny /

Components of room

s ™
@Entity: annotation Room Database
needed define a N J
table
4 ™
@Dao: annotation Data Access Objects
needed define a : ’
Data Access Object Get Entties fomdb [(- |
Entities
@Database: Get DAO | E:cr:iifé%hbanges \J ‘ ot ot e v g
annotation to create (h
the database holder Rest of The App

@Parcelize
data class PlacemarkModel(var id: Long = 0,

var title: String = "",
var description: String = "",
var image: String = "",

var lat : Double = 0.0,
var Lng: Double = 0.0,
var zoom: Float = 0f) : Parcelable

This Placemark Model i1s a Kotlin data class
It IS also Parcelable - which means it can be
sent between Activities

PlacemarkModel

«android» .| tplacemarks
Parcelable 0..

0

PlacemarkMemStore

@Parcelize
@Entity

data class PlacemarkModel(@PrimaryKey(autoGenerate = true) var id: Long = 0,
var title: String = "",
var description: String = "",
var image: String = "",

var lat : Double = 0.0,
var Lng: Double = 0.0,
var zoom: Float = 0f)

: Parcelable

When using the Room persistence library, you define
sets of related fields as entities. For each entity, a
table Is created within the
assoclated Datalbase object to hold the items.

Annotating the class with @Entity enables the class
to be also stored in a table in database

Annotating a field with @PrimaryKey marks a filed
as the key in this table

@Parcelize
@Entity

data class PlacemarkModel(@PrimaryKey(autoGenerate = true) var id: Long = 0,

var
var
var
var
var
var

title: String = "",
description: String = "",
image: String = "",

lat : Double = 0.0,

Ilng: Double = 0.0,

zoom: Float = 0f) : Parcelable

Room Database

/7 N
Data Access Objects
\ J
4 N
Get Entities from db Entities
Persist changes _ y,
back to db
| Sestanes J ‘ get / set field values
\
Rest of The App

@Dao
interface PlacemarkDao {

@Insert(onConflict = OnConflictStrategy.REPLACE)
fun create(placemark: PlacemarkModel)

@Query("SELECT x FROM PlacemarkModel")
fun findAll(): List<PlacemarkModel>

@Update
fun update(placemark: PlacemarkModel)

Jo access your app's data using the Room persistence
ibrary, you work with data access objects, or DAOs. This
set of Dao objects forms the main component of Room, as
each DAO includes methods that offer abstract access to

your app's database

@Dao
interface PlacemarkDao {

@Insert(onConflict = OnConflictStrategy.REPLACE)
fun create(placemark: PlacemarkModel)

@Query("SELECT * FROM PlacemarkModel")

fun findAl11l(): List<PlacemarkModel>

@Update

fun update(placemark: PlacemarkModel)

/

This IS an Interface to
the Placemark Table

We can create, fetch
and update
placemarks

Room Database

Data Access Objects }

Get DAO

Get Entities from db

Persist changes
back to db

\\
A
\
[Entities
v,
J ‘ get / set field values
\

Rest of The App

@Database(entities = arrayOf(PlacemarkModel::class), version = 1)
abstract class Database : RoomDatabase() {

abstract fun placemarkDao(): PlacemarkDao

}

Represents the Entire
Database

Provides a Dao object
for each table

Version number should
be changed If structure
of database changes

Room Database

Get DAO

r

-

Data Access Objects

‘\

j

Get Entities from db

Persist changes
back to db

(

<

Entities

J

J | get / set field values

Rest of The App

\

PlacemarkStoreRoom

Implements PlacemarkStore interface
Encapsulates primary database access from the rest of the app

class PlacemarkStoreRoom(val context: Context) : PlacemarkStore {
var dao: PlacemarkDao

init {
val database = Room.databaseBuilder(context, Database::class.java, "room_sample.db")
. fallbackToDestructiveMigration()
build()
dao = database.placemarkDao()

}

override fun findAll(): List<PlacemarkModel> {
return dao.findA11()

}

override fun create(placemark: PlacemarkModel) {
dao.create(placemark)

}

override fun update(placemark: PlacemarkModel) {
dao.update(placemark)

}
}

Room Database

Get DAO

4

Get Entities from db

Persist changes
back to db

Al

J] get / set field values

Rest of The App

\

v [0 org.wit.placemark
» [helpers
» 0 main
v [models
» [json
» [mem
v [room
¢ Database
r PlacemarkDao
(¢ PlacemarkStoreRoom
= PlacemarkModel.kt
r PlacemarkStore
» [0 views

