Objects ||, |

Objects

Objects, Singletons &
Companion objects

Object Expressions and Declarations

Sometimes we need to create an object of a slight modification of some class, without explicitly
declaring a new subclass for it. Java handles this case with anonymous inner classes. Kotlin

slightly generalizes this concept with object expressions and object declarations.

Object expressions

To create an object of an anonymous class that inherits from some type (or types), we write:

window.addMouselListener(object : MouseAdapter() {
override fun mouseClicked(e: MouseEvent) { ... }

override fun mouseEntered(e: MouseEvent) { ... }

})

If, by any chance, we need "just an object", with no nontrivial supertypes, we can simply say:

fun foo() {
val adHoc = object {
var x: Int = 0
var y: Int =0
}

print(adHoc.x + adHoc.y)

If a supertype has a constructor, appropriate constructor parameters must be passed to it.

Many supertypes may be specified as a comma-separated list after the colon:

open class A(x: Int) {
public open val y: Int = Xx

¥

interface B { ... }

val ab: A = object : A(1), B {
override val y = 15

}

Object declarations

Singleton may be useful in several cases, and Kotlin (after Scala) makes it easy to declare

singletons:

object DataProviderManager {
fun registerDataProvider(provider: DataProvider) {
[/ s
s

val allDataProviders: Collection<DataProvider>
get() = // ...

This is called an object declaration, and it always has a name following the object keyword. Just

like a variable declaration, an object declaration is not an expression, and cannot be used on

the right hand side of an assignment statement.
Object declaration's initialization is thread-safe.

To refer to the object, we use its name directly:

DataProviderManager.registerDataProvider(...)

Such objects can have supertypes:

object DefaultListener : MouseAdapter() A

override fun mouseClicked(e: MouseEvent) { ...

override fun mouseEntered(e: MouseEvent) { ...

Companion Objects

An object declaration inside a class can be marked with the companion keyword:

class MyClass {
companion object Factory A
fun create(): MyClass = MyClass()

}

Members of the companion object can be called by using simply the class name as the

qgualifier:

val instance = MyClass.create()

The name of the companion object can be omitted, in which case the name Companion will

be used:

class MyClass {
companion object { }

¥

val x = MyClass.Companion

