
Location Service API

�1

�2

Simple, battery-efficient location API for Android

- Apps can take advantage of
the signals provided by
multiple sensors in the
device to determine device
location.

- Choosing the right
combination of signals for a
specific task in different
conditions is not simple.

- Finding a solution that is also
battery-efficient is even more
complicated.

�3

Fused Location Provider

- The fused location provider
is a location API in Google
Play services that intelligently
combines different signals to
provide location information

- It manages the underlying
location technologies,
providing a simple API to
specify the required quality
of service.

�4

Fused Location Provider

�5

Last Known Location

- Getting the last known
location is usually a good
starting point for apps that
require location information.

var locationService: FusedLocationProviderClient = LocationServices.getFusedLocationProviderClient(view)

locationService.lastLocation.addOnSuccessListener {

 println(it.latitude, it.longitude)

}

- Using the fused location
provider API, your app can
request the last known
location of the user's device.

implementation ‘com.google.android.gms:play-services-location:16.0.0'

import com.google.android.gms.location.FusedLocationProviderClient

�6

Location Settings

- When requesting location
information many different
location sources, such as
GPS and Wi-Fi, are used.

- Deciding which sources to
use can be challenging, but
the fused location provider
API removes the guesswork
by automatically changing
the appropriate system
settings.

- All your app must do is
specify the desired level of
service.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.wit.placemark">

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

 <application
 ...
 </application>

</manifest>

�7

Location Updates- The fused location
provider API can deliver
location updates to a
callback in your app at
specific intervals.

- Specify the desired
interval as a parameter
of the quality of service.

- By using location
updates, your app can
provide additional
information such as
direction and velocity.

val locationRequest = LocationRequest().apply {
 interval = 10000
 fastestInterval = 5000
 priority = LocationRequest.PRIORITY_HIGH_ACCURACY
}

var locationCallback = object : LocationCallback() {
 override fun onLocationResult(locationResult: LocationResult?) {
 if (locationResult != null && locationResult.locations != null) {
 val l = locationResult.locations.last()
 println(it.latitude, it.longitude)
 }
 }
}

locationService.requestLocationUpdates(locationRequest, locationCallback, null)

�8

Location Address

- In some cases the address of
the location is more useful.

- A street address may be more
meaningful than the geographic
coordinates (latitude/longitude)
of the location..

�9

Geofences

- Geofencing combines awareness of the user's
current location with awareness of the user's
proximity to locations that may be of interest.

-
- To mark a location of interest, you specify its

latitude and longitude.

- To adjust the proximity for the location, you
add a radius. The latitude, longitude, and
radius define a geofence, creating a circular
area, or fence, around the location of interest.

