Extensions E

|

Extension
FuNnctions

The ablility to extend a class
with new functionality
without having to inherit
from the class



Extensions

Kotlin, similar to C# and Gosu, provides the ability to extend a class with new functionality without

having to inherit from the class or use any type of design pattern such as Decorator. This is done

via special declarations called extensions. Kotlin supports extension functions and extension

properties.



Extension Functions

To declare an extension function, we need to prefix its name with a receiver type, i.e. the type being
extended. The following adds a swap functionto MutableList<Int> :

fun MutablelList<Int>.swap(index1l: Int, index2: Int) {

val tmp = this[index1] // 'this' corresponds to the Llist
this[index1] = this[index2]
this[index2] = tmp

The this keyword inside an extension function corresponds to the receiver object (the one that is

passed before the dot). Now, we can call such a function on any MutableList<Int>:

val 1 = mutableListO0f(1, 2, 3)
L.swap(@, 2) // 'this' inside 'swap()' will hold the value of 'l'



Extension Properties

Similarly to functions, Kotlin supports extension properties:

val <T> List<T>.lastIndex: Int
get() = size - 1

Note that, since extensions do not actually insert members into classes, there's no efficient way for

an extension property to have a backing field. This is why initializers are not allowed for

extension properties. Their behavior can only be defined by explicitly providing getters/setters.



Scope of Extensions

Most of the time we define extensions on the top level, i.e. directly under packages:

package foo.bar

fun Baz.goo() { ... }

To use such an extension outside its declaring package, we need to import it at the call site:

package com.example.usage

import foo.bar.goo // importing all extensions by name "goo"

// Or
import foo.bar.x // importing everything from "foo.bar"

fun usage(baz: Baz) A
baz.goo()

¥



Motivation

In Java, we are used to classes named "*Utils": FileUtils, StringUtils and so on. The
famous java.util.Collections belongs to the same breed. And the unpleasant part about

these Utils-classes is that the code that uses them looks like this:

// Java

Collections.swap(list, Collections.binarySearch(1list,
Collections.max(otherList)),
Collections.max(list));

Those class names are always getting in the way. We can use static imports and get this:

// Java
swap(list, binarySearch(list, max(otherList)), max(list));

This is a little better, but we have no or little help from the powerful code completion of the IDE. It

would be so much better if we could say:

// Java
list.swap(list.binarySearch(otherList.max()), list.max());

But we don't want to implement all the possible methods inside the class List , right? This is

where extensions help us



