Model View Presenter

Model View E
Presenter

User Interaction

Passes View |
calls to . Fires
', events
’
Controller Model

Overview of Model View
Controller & Model View
Presenter patterns

Separation of concerns

In computer science, separation of
concerns (SoC) is a design principle for
separating a computer program into
distinct sections, such that each
section adadresses a separate concern.

A concern Is a set of information that
affects the code of a computer
program.

https://en.wikipedia.org/wiki/Separation of concerns

https://en.wikipedia.org/wiki/Separation_of_concerns

Proper MVP and MVC implementations have the Robert C. Martin Series
following characteristics:

Readable and maintainable code Clean COde

A Handbook of Agile Software Craftsmanship

Modular code which provides high degree of
decoupling

More testable code
- Code which is fun to work with

The above characteristics are generally associated
with “clean code”.

Foreword by James O. Coplien Robert C. Martin

The Clean Architecture

Robert C. Martin Series

Clean Architecture

Controllers

Enterprise Business Rules

Application Business Rules

Interface Adapters

Frameworks & Drivers

I

Use Case
Output Port

Use Case
Interactor

I

Presenter

Use Case
Input Port

Controller Robert C. Martin

Interfaces

Ul O Frameworks and Drivers

O Interface adapters
Presenters

Dependency
Rule

-+ —

' Business rules (interactors)

. Domain logic

Domain
Layer

Presentation
Layer

SJ0jJOelalu|

Model View
Presenter

Regular Java
Objects

Repository
Pattern

sauepunog

Model—view—controller

From Wikipedia, the free encyclopedia

Model-view—controller is an architectural pattern commonly used for
developing user interfaces that divides an application into three interconnected
parts. This is done to separate internal representations of information from the
ways information is presented to and accepted from the user.l'!?] The MVC
design pattern decouples these major components allowing for efficient code
reuse and parallel development.

Traditionally used for desktop graphical user interfaces (GUIs), this architecture
has become popular for designing web applications and even mobile, desktop

and other clients.3] Popular programming languages like Java, C#, Ruby, PHP
have MVC frameworks that are used in web application development straight
out of the box.

(o

UPDATES MANIPULATES
VIEW CONTROLLER
\
) <<?/
Ny \)‘o
\ /

Components

- The model is the central component of the

pattern. It is the application's dynamic data
structure, iIndependent of the user intertface. It
directly manages the data, logic and rules of

the application.

A view can be any output representation of
iInformation, such as a chart or a diagram.
Multiple views of the same information are
possible, such as a bar chart for management
and a tabular view for accountants.

- [he controller, accepts input and converts it
to commands for the model or view

INnteractions

n addition to dividing the application into three
KInds of components, the model-view—controller

design defines the interactions between them.

- The model is responsible for managing the

data of the app

from the controller.

ication. It recelves user input

he view means presentation of the model in
a particular format.

- The controller responds to the user input and
forms interactions on the data model

P
O

O
IN

€

.O:

ects. The contro

5
out to the model.

lonally validates

ler recelves the input,
it and then passes the

User Interaction

Passes
calls to « Fires
', events

Manipulates

Model—-view—presenter

From Wikipedia, the free encyclopedia

Model-view—presenter (MVP) is a derivation of the model-view—controller
(MVC) architectural pattern, and is used mostly for building user interfaces.

In MVP, the presenter assumes the functionality of the "middle-man”. In
MVP, all presentation logic is pushed to the presenter.']

Passive View

user events updates view

Presenter
(Supervising Controller)

updates model state-change events

| Model '

COmponents User Interaction

MVP Is a user interface architectural pattern engineered
to facilitate automated unit testing and improve
the separation of concerns in presentation logic:

- The model is an interface defining the data to be
. . . . Passes .
displayed or otherwise acted upon in the user interface. View
calls to
he view is a passive interface that displays data (the j

model) and routes user commands (events) to the
presenter to act upon that data.

Updates
Presenter

he presenter acts upon the model and the view. [t
retrieves data from repositories (the model), and
formats it for display in the view.

Normally, the view implementation instantiates the
concrete presenter object, providing a reference to itself.

Model
Manipulates

User Interaction

Passes

calls to View

Fires
', events

Controller

Manipulates

Model-View-Controller

User Interaction

Passes

View
calls to

Updates

Presenter
- . J

N

Fires *,

events *

Model
Manipulates

Model-View-Presenter

Model changed

MVC

Update model Updé‘e U

MOd EI ChangEdn

User actions

Model changed

Update model

\ J

— Presenter <

User actions

Update U

_

In MVC, the view gets notified of any
change in model’s state by the model

itself.

In MVP, the view knows nothing albout the model,
and it is the presenter’s job to fetch the up to date
data from the model, understand whether the view

should be updated and bind a new data to the view. y

~

th

har

_

€

K\/iews N MVC tend to r

M beca

use they are respo

ave more logic in

Nsible for

di

iNng of

otifications from th

e model.

n MVP, the same logic Is
makes the views very “du

becomes rendering of the data that was bound to them

Mmb” — their sole purpose

by the presenter and capturing user input.

ocated in the presenter, which

J

org.wit.placemark

activities
¢ MapsActivity
¢¢ PlacemarkActivity

¢ PlacemarkAdapter.kt
¢¢ PlacemarkListActivity
¢ PlacemarkMapsActivity
helpers

¢ FileHelpers.kt

¢ ImageHelpers.kt
main

& MainApp

models
¢ PlacemarkJSONStore.kt
¢ PlacemarkMemStore.kt
¢ PlacemarkModel.kt

¢ PlacemarkStore

) l .
191
S
-1 main L
3 /88
:6 > |
| / |
A 4 I
|l models 5
N :
\\ |
\ |
PN v

-0 helpers

‘=3l activities

/
/

activities

—

main

o

helpers ¢-- models

———————— _ | ~S. ot —— 3
________________ _-" | T Tkl d T
__________ -~ | ~~o P kS
_______________________ Pl | | L T T T e

_________________ ad | “~~.§ ~‘"‘-~—___> T T T e e _
f | - .. | -y . . o
: i {9 PlacemarkMapsActivity i ‘{9 PlacemarkActivity ‘0 1 ‘{3 PlacemarkAdapter i
| S : : ~r o e T N T ! \ i
: ———— ia RN " : :4\\ ————— ’/3, : -'\’\ ““““ “\‘\\\\\\ : \\6 :
e Ss I | -7 6 ’:><”’ 7/ /,’/ _a--—TTT \‘\\ \\‘~:\‘~\\ | \
S] V o7 27T T L7 -7 L RRISREN N v
S S {3 MainApp {3 ImageHelpersKt : {3 MapsActivity o &) PlacemarkListener
: : : i l‘ \\\\2 5 ———————— \\\ /,/ : E :

| S ~. S == |
| i | ,', sz W14 /9 | |
: : I : 1‘4 S \\\'\ \\l 1//, : : :

| ®

! {3 PlacemarkMemStore 4 4 o {3 PlacemarkJSONStore , {3 Location | i
| -
: : ’// : \\‘\ 1 \\ l\\ : : / // \\ ~~~~~ : : :
] i | Sa A \ [| e K \ s TT=a P! |

| P |1 S \ \ | | 7 / 23 \ 3 ~~ o | | |
723 i SMA N N vy K1/ N T o '
L \4 A NN N Vv VOB J/ N) Tt L :
| ® .
o {3 PlacemarkMemStoreKt &) PlacemarkStore | {3 FileHelpersKt {9 PlacemarkJSONStoreKt 9. i

I I I - P -
e ~< 1 - ==

RN S 5 ' e =TT mm T 1
-~‘~—‘—=~=_=_=~===~_ . | ’___.—-""- ____:_-_-__—':: ——————————————
-_-“~—=—=_=_=_:_===~_ S | _____--"" ___::_-_-_-_—:-'-":": —————————————
- = ~‘~“-=_=_=_=_=~=_=_=_=~= = B >~ ' - — ::.—:-:’ {{{{‘:{{: ———————
5 oEEas S NN Vg gm@rgEEEEEE
PlacemarkModel

{3 PlacemarkListActivity

‘@ PlacemarkActivity {9 PlacemarkMapsActivity
MainApp
{9 PlacemarkAdapter PlacemarkjSONStore PlacemarkMemStore
{3 MapsActivity &% PlacemarkListener ‘{9 PlacemarkJSONStoreKt \L; PlacemarkStore

{3 FileHelpersKt ImageHelpersKt Location PlacemarkMemStoreKt {3 PlacemarkModel

ttps://structure101.com

Products Resources Download Store

PUT YOUR
SOFTWARE STRUCTURE

TO WORK

DOWNLOAD NOW

https://structure101.com/

