
Model View Presenter

Separation of concerns

In computer science, separation of
concerns (SoC) is a design principle for

separating a computer program into
distinct sections, such that each

section addresses a separate concern.

A concern is a set of information that
affects the code of a computer

program.

https://en.wikipedia.org/wiki/Separation_of_concerns

https://en.wikipedia.org/wiki/Separation_of_concerns

Proper MVP and MVC implementations have the
following characteristics:

• Readable and maintainable code

• Modular code which provides high degree of
decoupling

• More testable code

• Code which is fun to work with

The above characteristics are generally associated
with “clean code”.

Components

• The model is the central component of the
pattern. It is the application's dynamic data
structure, independent of the user interface. It
directly manages the data, logic and rules of
the application.

• A view can be any output representation of
information, such as a chart or a diagram.
Multiple views of the same information are
possible, such as a bar chart for management
and a tabular view for accountants.

• The controller, accepts input and converts it
to commands for the model or view

Interactions

In addition to dividing the application into three
kinds of components, the model–view–controller
design defines the interactions between them.

• The model is responsible for managing the
data of the application. It receives user input
from the controller.

• The view means presentation of the model in
a particular format.

• The controller responds to the user input and
performs interactions on the data model
objects. The controller receives the input,
optionally validates it and then passes the
input to the model.

MVP is a user interface architectural pattern engineered
to facilitate automated unit testing and improve
the separation of concerns in presentation logic:

• The model is an interface defining the data to be
displayed or otherwise acted upon in the user interface.

• The view is a passive interface that displays data (the
model) and routes user commands (events) to the
presenter to act upon that data.

• The presenter acts upon the model and the view. It
retrieves data from repositories (the model), and
formats it for display in the view.

Normally, the view implementation instantiates the
concrete presenter object, providing a reference to itself.

Components

In MVC, the view gets notified of any
change in model’s state by the model

itself.

In MVP, the same logic is located in the presenter, which
makes the views very “dumb” – their sole purpose
becomes rendering of the data that was bound to them
by the presenter and capturing user input.

In MVP, the view knows nothing about the model,
and it is the presenter’s job to fetch the up to date
data from the model, understand whether the view
should be updated and bind a new data to the view.

Views in MVC tend to have more logic in
them because they are responsible for

handling of notifications from the model.

https://structure101.com/

https://structure101.com/

