Interfaces H

Visibility

Kotlin interfaces largely
follow Java 8 conventions



Visibility Modifiers

Classes, objects, interfaces, constructors, functions, properties and their setters can have visibility modifiers.
(Getters always have the same visibility as the property.) There are four visibility modifiers in Kotlin:

private, protected, internal and public . The default visibility, used if there is no explicit modifier,
s public.



Packages

Functions, properties and classes, objects and interfaces can be declared on the "top-level", i.e. directly inside

a package:

// Tile name: example.kt
package foo

fun baz() { ... }
class Bar { ... }

— If you do not specify any visibility modifier, public is used by default, which means that your

declarations will be visible everywhere;

— If you mark a declaration private, it will only be visible inside the file containing the declaration;

— Ifyou mark it internal, itis visible everywhere in the same module;

— protected is not available for top-level declarations.



Examples:

// Tile name: example.kt
package foo

private fun foo() { ... } // visible inside example.kt

public var bar: Int =5 // property is visible everywhere
private set // setter is visible only in example.kt

internal val baz = 6 // visible inside the same module



Classes and Interfaces

For members declared inside a class:

— prilvate means visible inside this class only (including all its members);

— protected —sameas private + visible in subclasses too;
— 1nternal — any clientinside this module who sees the declaring class sees its internal members;

— public — any client who sees the declaring class sees its public members.

NOTE for Java users: outer class does not see private members of its inner classes in Kotlin.

If you override a protected member and do not specify the visibility explicitly, the overriding member will

also have protected visibility.



open class Outer A
private val a = 1
protected open val b = 2
internal val c = 3
val d =4 // public by default

protected class Nested {
public val e: Int = 5

¥

class Subclass : Outer() {
// a 1S not visible
// b, ¢ and d are visible
// Nested and e are visible

override val b =5 // 'b' is protected

¥

class Unrelated(o: Outer) {
// 0.a, 0.b are not visible
// 0.C and o.d are visible (same module)
// Outer.Nested is not visible, and Nested::e is not visible either



Constructors

To specifty a visibility of the primary constructor of a class, use the following syntax (note that you need to
add an explicit constructor keyword):

class C private constructor(a: Int) { ... }

Here the constructor is private. By default, all constructors are public , which effectively amounts to them

being visible everywhere where the class is visible (i.e. a constructor of an i1nternal class is only visible
within the same module).

Local declarations

Local variables, functions and classes can not have visibility modifiers.



