Interfaces H

INterfaces

Kotlin interfaces largely
follow Java 8 conventions

Interfaces

Interfaces in Kotlin are very similar to Java 8. They can contain declarations of abstract
methods, as well as method implementations. What makes them different from abstract
classes is that interfaces cannot store state. They can have properties but these need to

be abstract or to provide accessor implementations.

An interface is defined using the keyword 1nterface

interface MyInterface {
fun bar()

fun foo() K
// optional body

}

Implementing Interfaces

A class or object can implement one or more interfaces

class Child : MyInterface {
override fun bar() {
// body
s

Properties in Interfaces

You can declare properties in interfaces. A property declared in an interface can either
be abstract, or it can provide implementations for accessors. Properties declared in
interfaces can't have backing fields, and therefore accessors declared in interfaces can't

reference them.

interface MyInterface {
val prop: Int // abstract

val propertyWithImplementation: String

get() = "foo"
fun foo() {
print(prop)

}
}

class Child : MyInterface {
override val prop: Int = 29

}

Interfaces Inheritance

An interface can derive from other interfaces and thus both provide implementations for
their members and declare new functions and properties. Quite naturally, classes

implementing such an interface are only required to define the missing

Implementations:

interface Named {
val name: String

}

interface Person : Named {
val firstName: String
val lastName: String

override val name: String get() = "$firstName $lastName"

}

data class Employee(
// implementing 'name' 1s not required
override val firstName: String,
override val lastName: String,
val position: Position

) : Person

