
Produced

by

Department of Computing & Mathematics

Waterford Institute of Technology

http://www.wit.ie

Mobile Application Development

David Drohan (ddrohan@wit.ie)

JSON & Googles Gson

05 - Persistence & Multithreading
 2!

A bit about !
JSON !

& !
Googles !

Gson!
05 - Persistence & Multithreading
 3!

Question?

❑ Given a particular set of data, how do you store it permanently?

■  What do you store on disk?

■  What format?

■  Can you easily transmit over the web?

■  Will it be readable by other languages?

■  Can humans read the data?

❑  Examples:

■  A Square

■  A Dictionary

■  A Donation…

05 - Persistence & Multithreading
 4!

Storage Using Plain Text

❑  Advantages

■  Human readable (good for debugging / manual editing)

■  Portable to different platforms

■  Easy to transmit using web

❑ Disadvantages

■  Takes more memory than necessary

❑  Alternative? - use a standardized system -- JSON

■  Makes the information more portable

05 - Persistence & Multithreading
 5!

❑ Language Independent.

❑ Text-based.

❑ Light-weight.

❑ Easy to parse.

JavaScript Object Notation – What is it?

05 - Persistence & Multithreading
 6!

§  JSON is lightweight text-data interchange format

§  JSON is language independent*

§  *JSON uses JavaScript syntax for describing data objects

§  JSON parsers and JSON libraries exists for many different

programming languages.

§  JSON is "self-describing" and easy to understand

§  JSON - Evaluates to JavaScript Objects

§  The JSON text format is syntactically identical to the code for
creating JavaScript objects.

§  Because of this similarity, instead of using a parser, a JavaScript
program can use the built-in eval()*** function and execute JSON
data to produce native JavaScript objects.

JavaScript Object Notation – What is it?

05 - Persistence & Multithreading
 7!

When to use JSON?

❑ SOAP is a protocol specification for exchanging structured

information in the implementation of Web Services.

❑ SOAP internally uses XML to send data back and forth.

❑ REST is a design concept.

❑ You are not limited to picking XML to represent data, you

could pick anything really (JSON included).

05 - Persistence & Multithreading
 8!

JSON example

{

"firstName": "John",

"lastName": "Smith",

"age": 25,

"address": {

"streetAddress": "21 2nd Street",

"city": "New York",

"state": "NY",

"postalCode": 10021

},

"phoneNumbers": [

{

"type": "home",

"number": "212 555-1234"

},

{

"type": "fax",

"number": "646 555-4567"

}

]

}

05 - Persistence & Multithreading
 9!

JSON to XML

<?xml version="1.0" encoding="UTF-8"?>

<persons>

<person>

<firstName>John</firstName>

<lastName>Smith</lastName>

<age>25</age>

<address>

<streetAddress>21 2nd Street</streetAddress>

<city>New York</city>

<state>NY</state>

<postalCode>10021</postalCode>

</address>

<phoneNumbers>

<phoneNumber>

<number>212 555-1234</number>

<type>home</type>

</phoneNumber>

<phoneNumber>

<number>646 555-4567</number>

<type>fax</type>

</phoneNumber>

</phoneNumbers>

</person>

</persons>

05 - Persistence & Multithreading
 10!

JSON vs XML size

❑ XML: 549 characters, 549 bytes

❑ JSON: 326 characters, 326 bytes

❑ XML ~68,4 % larger than JSON!

❑ But a large data set is going to be large regardless of the data
format you use.

❑ Most servers gzip or otherwise compress content before
sending it out, the difference between gzipped JSON and
gzipped XML isn’t nearly as drastic as the difference between
standard JSON and XML.

05 - Persistence & Multithreading
 11!

JSON vs XML

Favor XML over JSON when any of these is true:

❑  You need message validation

❑  You're using XSLT

❑  Your messages include a lot of marked-up text

❑  You need to interoperate with environments that don't support JSON

Favor JSON over XML when all of these are true:

❑  Messages don't need to be validated, or validating their deserialization is simple

❑  You're not transforming messages, or transforming their deserialization is simple

❑  Your messages are mostly data, not marked-up text

❑  The messaging endpoints have good JSON tools

05 - Persistence & Multithreading
 12!

Security problems***

❑ The eval() function can compile and execute any JavaScript.

This represents a potential security problem.

❑ It is safer to use a JSON parser (like Gson) to convert a JSON

text to a JavaScript object. A JSON parser will recognize only
JSON text and will not compile scripts.

❑ In browsers that provide native JSON support, JSON parsers
are also faster.

❑ Native JSON support is included in newer browsers and in the
newest ECMAScript (JavaScript) standard.

05 - Persistence & Multithreading
 13!

JSON Schema

❑ Describes your JSON data format

❑ http://jsonschemalint.com/

❑ http://json-schema.org/implementations

❑ http://en.wikipedia.org/wiki/
JSON#Schema_and_Metadata

05 - Persistence & Multithreading
 14!

JSON Values

JSON values can be:

❑ A number (integer or floating point)

❑ A string (in double quotes)

❑ A boolean (true or false)

❑ An object (in curly brackets)

❑ An array (in square brackets)

❑ null

05 - Persistence & Multithreading
 15!

❑ Object

■  Unordered set of name-value pairs

■  names must be strings

■  { name1 : value1, name2 : value2, …, nameN : valueN }

❑ Array

■  Ordered list of values

■  [value1, value2, … valueN]

JSON Values

05 - Persistence & Multithreading
 16!

Value

num be r

s t r in g

v a lu e

o b je c t

false

null

a rra y

true

05 - Persistence & Multithreading
 17!

Strings

❑ Sequence of 0 or more Unicode characters

❑ No separate character type

■  A character is represented as a string with a length of 1

❑ Wrapped in "double quotes"

❑ Backslash escapement

05 - Persistence & Multithreading
 18!

String

s t r in g

"
A n y 	U N IC O D E 	c h a ra c te r 	e x c e p t
"	 	o r 	 	\	 	o r 	 c o n tro l 	 c h a ra c te r

\ "

\

quo ta t io n 	m a rk

re v e rs e 	s o l id u s

/
s o l id u s

b
ba c k s p a c e

fo rm fe e d

n e w l in e

c a rr ia g e 	 re tu rn

h o r iz o n ta l 	 ta b

4 	h e x a d e c im a l 	d ig i t s

f

n

r

t

u

"

05 - Persistence & Multithreading
 19!

Numbers

❑ Integer

❑ Real

❑ Scientific

❑ No octal or hex

❑ No NaN or Infinity

■  Use null instead

05 - Persistence & Multithreading
 20!

Number

num be r

d ig i t 	
1 - 9

.0

d ig i t

e

E

d ig i t

-

d ig i t
+

-

05 - Persistence & Multithreading
 21!

Booleans

❑ true
❑ false

05 - Persistence & Multithreading
 22!

null

❑ A value that isn't anything

05 - Persistence & Multithreading
 23!

Object

❑ Objects are unordered containers of key/value pairs

❑ Objects are wrapped in { }
❑ , separates key/value pairs

❑ : separates keys and values

❑ Keys are strings

❑ Values are JSON values

■  struct, record, hashtable, object

05 - Persistence & Multithreading
 24!

Object

{ : }v a lu es t r in g

o b je c t

,

{	
"_id":"560515770f76130300c69953",	
"usertoken":"11343761234567808125",	
"paymenttype":"PayPal",	
"__v":0,	
"upvotes":0,	
"amount":1999	
}!

05 - Persistence & Multithreading
 25!

Array

❑ Arrays are ordered sequences of values

❑ Arrays are wrapped in []
❑ , separates values

❑ JSON does not talk about indexing.

■  An implementation can start array indexing at 0 or 1.

05 - Persistence & Multithreading
 26!

Array

[]v a lu e

a rra y

,

[
{"_id":"560515770f76130300c69953","usertoken":"11343761234567808125","
paymenttype":"PayPal","__v":0,"upvotes":0,"amount":1999},	
	
{"_id":"56125240421892030048403d","usertoken":"11343761234567808125","
paymenttype":"PayPal","__v":0,"upvotes":5,"amount":1234},	
	
{"_id":"5627620ac9e9e303005b113c","usertoken":"11343761234567808125","
paymenttype":"Direct","__v":0,"upvotes":2,"amount":1001}	
]	

05 - Persistence & Multithreading
 27!

MIME Media Type & Character Encoding

❑ application/json	

❑ Strictly UNICODE.

❑ Default: UTF-8.

❑ UTF-16 and UTF-32 are allowed.

05 - Persistence & Multithreading
 28!

Versionless

❑ JSON has no version number.

❑ No revisions to the JSON grammar are anticipated.

❑ JSON is very stable.

05 - Persistence & Multithreading
 29!

Rules

❑ A JSON decoder must accept all well-formed JSON

text.

❑ A JSON decoder may also accept non-JSON text.

❑ A JSON encoder must only produce well-formed JSON

text.

❑ Be conservative in what you do, be liberal in what you

accept from others.

05 - Persistence & Multithreading
 30!

CoffeeMate!
& !

Googles Gson !

05 - Persistence & Multithreading
 31!

Google’s Gson

https://sites.google.com/site/gson/gson-user-guide

Gson is a Java library that can be used to convert Java Objects into
their JSON representation. It can also be used to convert a JSON string
to an equivalent Java object. Gson is an open-source project hosted at
http://code.google.com/p/google-gson.

Gson can work with arbitrary Java objects including pre-existing objects
that you do not have source-code of.

05 - Persistence & Multithreading
 32!

CoffeeMate & Google’s Gson

05 - Persistence & Multithreading
 33!

❑ To create a POJO from a JSON String we can do
something like this (.fromJson())

❑ To convert a POJO to a JSON String we can do
something like this (.toJson())

JSON Summary

❑ JSON is a standard way to exchange data

■  Easily parsed by machines

■  Human readable form

❑ JSON uses dictionaries and lists

■  Dictionaries are unordered

■  Lists are ordered

❑ GSON is Googles JSON parser

■  Very simple to use

05 - Persistence & Multithreading
 34!

Sources

❑ http://en.wikipedia.org/wiki/JSON

❑ http://www.w3schools.com/json/

❑ http://www.json.org/

❑ http://json-schema.org

❑ http://www.nczonline.net/blog/2008/01/09/is-json-

better-than-xml/

❑ http://en.wikipedia.org/wiki/SOAP_(protocol)

❑ http://en.wikipedia.org/wiki/REST

❑ http://stackoverflow.com/questions/16626021/json-

rest-soap-wsdl-and-soa-how-do-they-all-link-together

05 - Persistence & Multithreading
 35!

