
Android Platform,
Compnents & Activities

Android is an open source, Linux-
based software stack created for a

wide array of devices and form
factors.

Platform Fundamentals

The Linux Kernel

The foundation of the
Android platform

 Allows Android to take
advantage of key security

features.

Allows device manufacturers
to develop hardware drivers

for a well-known kerne

Hardware Abstraction Layer (HAL)

Provides standard interfaces that expose device hardware
capabilities to the higher-level Java API framework.

Consists of multiple library modules, each of which implements
an interface for a specific type of hardware component.

When a framework API makes a call to access device hardware, the
Android system loads the library module for that hardware component.

Each app runs in its own
process and with its own
instance of the Android

Runtime (ART).

ART is written to run multiple
virtual machines on low-

memory devices by
executing DEX files,

Dex is a bytecode format
designed specially for

Android that's optimized for
minimal memory footprint

Android Runtime

• Ahead-of-time (AOT) and
just-in-time (JIT) compilation

• Optimized garbage
collection (GC)

• Conversion of an app
package's Dalvik
Executable format (DEX)
files to more compact
machine code (API 28)

• Debugging support,
including a dedicated
sampling profiler, detailed
diagnostic exceptions and
crash reporting

ART Features

Core runtime libraries that
provide most of the

functionality of the Java
programming language

Native C/C++ Libraries

Many core components and
services, (ART & HAL), are built
from native code that require

native libraries written in C and
C++.

The Android platform provides
Java framework APIs to expose

the functionality of some of these
native libraries to apps.

E.G:
Access OpenGL ES through the Android

framework’s Java OpenGL API to add
support for drawing and manipulating 2D

and 3D graphics in your app.

Java API
Framework

The entire feature-set of the
Android OS is available

through APIs written in the
Java.

These APIs form the building
blocks for Android apps,

simplifying the reuse of core,
modular system components

and services

• View System: to build an app’s UI, including lists,
grids, text boxes, buttons, and even an embeddable
web browser

• Resource Manager: providing access to non-code
resources such as localized strings, graphics, and layout
files

• Notification Manager : enables all apps to display
custom alerts in the status bar

• Activity Manager: manages the lifecycle of apps and
provides a common navigation back stack

• Content Providers: enable apps to access data from
other apps (eg)Contacts app) or to share their own data

System Apps

A set of core apps for email,
SMS messaging, calendars,

internet browsing, contacts, etc..

Apps included with the platform
have no special status among
the apps the user chooses to

install.

These are app for users + they
provide capabilities that
developers can access.

So a third-party app can become
the user's default web browser,
SMS messenger, or even the

default keyboard (some
exceptions apply, such as the

system's Settings app).

Application Component Fundamentals

Android apps can be written using Kotlin,
Java, and C++ languages.

The Android SDK tools compile
 code along with any data and resource files
into an APK, an Android package, which is

an archive file with an .apk suffix.

One APK file contains all the contents of an
Android app and is the file that Android-
powered devices use to install the app.

Android Application

Each Android app lives in its own security
sandbox, protected a range of security
features. Specifically, each app:

• Is assigned a unique Linux user ID. The
system sets permissions for all the files in an
app so that only the user ID assigned to that
app can access them.

• Is a process with its own virtual machine
(VM), so an app's code runs in isolation from
other apps.

The Android system starts
the process when any of the
app's components need to

be executed, and then
shuts down the process

when it's no longer needed
or when the system must
recover memory for other

apps.

Security Model

 Principle of Least Privilege.
• An app can request permission

to access device data such as
the user's contacts, SMS
messages, the mountable
storage (SD card), camera, and
Bluetooth.

• The user has to explicitly grant
these permissions.

Each app, by default, has access
only to the components that it
requires to do its work and no

more.

This creates a secure
environment in which an app
cannot access parts of the

system for which it is not given
permission.

However, there are ways for an
app to share data with other apps
and for an app to access system

services:

App components are the essential building
blocks of an Android app.

Each component is an entry point through
which the system or a user can enter the app

Each type serves a distinct purpose and has a
distinct lifecycle that defines how the
component is created and destroyed

4 Types

Application Components

http://yellowsblog.com

Activities I

An activity is the entry point for
interacting with the user.

It represents a single screen with a
user interface.

Activities work together to form a
cohesive user experience

An email app might have one
activity that shows a list of new

emails, another activity to
compose an email, and another

activity for reading emails

Activities II

A camera app can start the
activity in the email app that
composes new mail to allow
the user to share a picture

If permitted, a different app can
start activity in another app.

Although the activities work together
to form a cohesive user experience

each one is independent of the
others.

Activity Lifecycle

To navigate transitions between
stages of the activity lifecycle, the

Activity class provides a core set of
six callbacks:

onCreate(),
onStart(),

onResume(),
onPause(),
onStop(),

onDestroy().

The system invokes each of these
callbacks as an activity enters a new

state.

