Types H

lypes

Summary of the basic types
in the Kotlin programming
language

Numbers

Kotlin handles numbers in a way close to Java, but not exactly the same. For example, there are no

implicit widening conversions for numbers, and literals are slightly different in some cases.

Kotlin provides the following built-in types representing numbers (this is close to Java):

Type Bit width

Double 64
Float 32
Long 64
Int 32
Short 16
Byte 8

Note that characters are not numbers in Kotlin.

Literal Constants

There are the following kinds of literal constants for integral values:

— Decimals: 123

— Longs are tagged by a capital L: 123L

— Hexadecimals: Ox0F

— Binaries: 0b00001011
NOTE: Octal literals are not supported.

Kotlin also supports a conventional notation for floating-point numbers:

— Doubles by default: 123.5, 123.5e10

— Floats are tagged by f or F: 123.5f

Underscores in numeric literals (since 1.1)

You can use underscores to make number constants more readable:

val oneMillion 1 000 _000

val creditCardNumber = 1234 5678 9012 3456L

val socialSecurityNumber = 999 99 9999L

val hexBytes = OxFF_EC _DE_5E

val bytes = 0b11010010 01101001_10010100_ 10010010

Representation

On the Java platform, numbers are physically stored as JVM primitive types, unless we need a nullable

number reference (e.g. Int?) or generics are involved. In the latter cases numbers are boxed.

Note that boxing of numbers does not necessarily preserve identity:

val a: Int = 10000

println(a === a) // Prints 'true’
val boxedA: Int? = a

val anotherBoxedA: Int? = a

println(boxedA === anotherBoxedA) // !!!Prints 'false'!!!

On the other hand, it preserves equality:

val a: Int = 10000

println(a == a) // Prints 'true’

val boxedA: Int? = a

val anotherBoxedA: Int? = a

println(boxedA == anotherBoxedA) // Prints 'true'

Explicit Conversions

Due to different representations, smaller types are not subtypes of bigger ones. If they were, we would

nave troubles of the following sort:

// Hypothetical code, does not actually compile:

val a: Int? =1 // A boxed Int (java.lang.Integer)

val b: Long? = a // implicit conversion yields a boxed Long (java.lang.Long)

print(b == a) // Surprise! This prints "false" as Long's equals() checks whether the other i

So equality would have been lost silently all over the place, not to mention identity.

As a consequence, smaller types are NOT implicitly converted to bigger types. This means that we cannot

assign a value of type Byte toan Int variable without an explicit conversion

val b: Byte =1 // OK, literals are checked statically ’
val 1: Int b // ERROR

We can use explicit conversions to widen numbers

val i: Int = b.toInt() // OK: explicitly widened ’
print(i)

Every number type supports the following conversions:

— toByte(): Byte

— toShort(): Short
— tolnt(): Int

— tolLong(): Long

— toFloat(): Float
— toDouble(): Double

— toChar(): Char

Absence of implicit conversions is rarely noticeable because the type is inferred from the context, and

arithmetical operations are overloaded for appropriate conversions, for example

val L =1L + 3 // Long + Int => Long

Operations

Kotlin supports the standard set of arithmetical operations over numbers, which are declared as

members of appropriate classes (but the compiler optimizes the calls down to the corresponding

instructions). See Operator overloading.

As of bitwise operations, there're no special characters for them, but just named functions that can be

called in infix form, for example:

val x = (1 shl 2) and 0x000FF000

Here is the complete list of bitwise operations (available for Int and Long only):

— shl(bits) - signed shift left (Java's <<)

— shr(bits) - signed shiftright (Java's >>)

— ushr(bits) - unsigned shift right (Java's >>>)
— and(bits) - bitwise and

— or(bits) - bitwise or

— xor(bits) - bitwise xor

— 1inv() - bitwise inversion

Floating Point Numbers Comparison
The operations on floating point numbers discussed in this section are:
— Equality checks: a == b and a '= D
— Comparison operators: a < b, a >b,a<=b,a>=0>b
— Range instantiation and range checks: a..b, x in a..b, x !'in a..b
When the operands a and b are statically known to be Float or Double or their nullable

counterparts (the type is declared or inferred or is a result of a smart cast), the operations on the
numbers and the range that they form follow the IEEE 754 Standard for Floating-Point Arithmetic.

However, to support generic use cases and provide total ordering, when the operands are not statically
typed as floating point numbers (e.g. Any , Comparable<...>, atype parameter), the operations use

the equals and compareTo implementations for Float and Double , which disagree with the
standard, so that:

— NaN is considered equal to itself

— NaN is considered greater than any other element including POSITIVE_INFINITY

— —0.0 is considered lessthan 0.0

Characters

Characters are represented by the type Char . They can not be treated directly as numbers

fun check(c: Char) {
if (c == 1) { // ERROR: incompatible types

[/ .
}

Character literals go in single quotes: '1' . Special characters can be escaped using a backslash. The
following escape sequences are supported: \t, \b, \n, \r, \', \", \\ and \$.To encode any

other character, use the Unicode escape sequence syntax: '\uFFeo"' .

We can explicitly convert a character to an Int number:

fun decimalDigitValue(c: Char): Int {
if (c !'in '0'..'9")
throw IllegalArgumentException("Out of range")
return c.toInt() - '0'.toInt() // Explicit conversions to numbers

Like numbers, characters are boxed when a nullable reference is needed. Identity is not preserved by the

boxing operation.

Booleans

The type Boolean represents booleans, and has two values: true and false.
Booleans are boxed if a nullable reference is needed.
Built-in operations on booleans include

— || -lazy disjunction
— && - lazy conjunction

— | - negation

Arrays

Arrays in Kotlin are represented by the Array class, that has get and set functions (that turninto

[] by operator overloading conventions), and size property, along with a few other useful member

functions:

class Array<T> private constructor() {
val size: Int
operator fun get(index: Int): T
operator fun set(index: Int, value: T): Unit

operator fun iterator(): Iterator<T>
[/ «us

To create an array, we can use a library function array0f() and pass the item values to it, so that
array0f(1, 2, 3) createsanarray [1, 2, 3] .Alternatively, the arrayOfNulls() library

function can be used to create an array of a given size filled with null elements.

Another option is to use the Array constructor that takes the array size and the function that can

return the initial value of each array element given its index:

// Creates an Array<String> with values ["O", "1", "4", "9", "16"] ’
val asc = Array(5, { i —> (i % i).toString() })
asc.forEach { println(it) }

As we said above, the [] operation stands for calls to member functions get() and set() .

Note: unlike Java, arrays in Kotlin are invariant. This means that Kotlin does not let us assign an
Array<String> to an Array<Any> ,h which prevents a possible runtime failure (but you can use

Array<out Any>, see Type Projections).

Kotlin also has specialized classes to represent arrays of primitive types without boxing overhead:
ByteArray, ShortArray, IntArray and so on. These classes have no inheritance relation to the
Array class, but they have the same set of methods and properties. Each of them also has a

corresponding factory function:

val x: IntArray = intArrayO0f(1, 2, 3)
x[0] = x[1] + x[2]

Strings

Strings are represented by the type String . Strings are immutable. Elements of a string are characters

that can be accessed by the indexing operation: s[i] . A string can be iterated over with a for-loop:

for (c in str) { >
println(c)
+

You can concatenate strings using the + operator. This also works for concatenating strings with values

of other types, as long as the first element in the expression is a string:

val s = "abc" + 1 >
println(s + "def")

Note that in most cases using string templates or raw strings is preferable to string concatenation.

String Literals

Kotlin has two types of string literals: escaped strings that may have escaped characters in them and raw

strings that can contain newlines and arbitrary text. An escaped string is very much like a Java string:

val s = "Hello, world!\n"

Escaping is done in the conventional way, with a backslash. See Characters above for the list of supported
escape sequences.

A raw string is delimited by a triple quote ("""), contains no escaping and can contain newlines and any

other characters:

val text =
for (c in "foo")

print(c)

You can remove leading whitespace with trimMargin() function:

val text = """

Tell me and I forget.
Teach me and I remember.
Involve me and I learn.
(Benjamin Franklin)

o trimMargin()

By default | is used as margin prefix, but you can choose another character and pass it as a parameter,

like trimMargin(">"

String Templates

Strings may contain template expressions, i.e. pieces of code that are evaluated and whose results are
concatenated into the string. A template expression starts with a dollar sign ($) and consists of either a

simple name:

val 1 = 10 >

println("i = $i") // prints "i = 10"

or an arbitrary expression in curly braces:

)

val s = "abc"
println("$s.length is ${s.length}") // prints "abc.length is 3"

Templates are supported both inside raw strings and inside escaped strings. If you need to represent a
literal $ character in a raw string (which doesn't support backslash escaping), you can use the following

syntax:

val price =

${'$"'}9.99

