
I/O Streams in Java

Produced

by:

Department of Computing and Mathematics

http://www.wit.ie/

Eamonn de Leastar (edeleastar@wit.ie)

Dr. Siobhán Drohan (sdrohan@wit.ie)

mailto:edeleastar@wit.ie
mailto:sdrohan@wit.ie

Essential Java

 Overview

 Introduction

 Syntax

 Basics

 Arrays

 Classes

 Classes Structure

 Static Members

 Commonly used
Classes

 Control Statements

 Control Statement
Types

 If, else, switch

 For, while, do-while

 Inheritance
 Class hierarchies

 Method lookup in Java

 Use of this and super

 Constructors and
inheritance

 Abstract classes and
methods

 Interfaces

 Collections

 ArrayList

 HashMap

 Iterator

 Vector

 Enumeration

 Hashtable

 Exceptions

 Exception types

 Exception Hierarchy

 Catching exceptions

 Throwing exceptions

 Defining exceptions

Common exceptions and
errors

 Streams

 Stream types

 Character streams

 Byte streams

 Filter streams

 Object Serialization

Road Map

Introduction to I/O Streams

Byte-oriented I/O Streams

Character-oriented I/O Streams

Layered I/O Streams (e.g. buffering)

Line-oriented I/O Streams

Scanning

Pacemaker I/O

Further Reading:

Data Streams

Object Streams

Command Line I/O

Introduction

An I/O Stream represent a sequence of data:
 a one way, sequential flow of data.

Conceptualise it as water flowing through a pipe.

https://docs.oracle.com/javase/tutorial/essential/io/streams.html

Input Stream

A program uses an input stream to read data

from a source, one item at a time:

https://docs.oracle.com/javase/tutorial/essential/io/streams.html

Output Stream

A program uses an output stream to write data to

a destination, one item at time:

https://docs.oracle.com/javase/tutorial/essential/io/streams.html

I/O Streams

java.io package

Abstract classes in I/O Streams

http://chortle.ccsu.edu/java5/notes/chap82/ioHierarchyTop.gif

java.io package

Road Map

Introduction to I/O Streams

Byte-oriented I/O Streams

Character-oriented I/O Streams

Layered I/O Streams (e.g. buffering)

Line-oriented I/O Streams

Scanning

Pacemaker I/O

Further Reading:

Data Streams

Object Streams

Command Line I/O

Byte-oriented Streams

Programs use byte streams to perform

input and output of 8-bit bytes.

Byte Streams (I/O of 8-bit bytes)

InputStream & OutputStream

are abstract; all descendants

are concrete.

Frequently used to read/write

from files i.e. FileInputStream

and FileOutputStream.

java.io package

Byte Streams I/O: Steps

1. Open an input/output stream associated with a

physical device.

2. Read from the opened input stream until "end-

of-stream" encountered or

Write to the opened output stream.

3. Close the input/output stream.

Byte Streams I/O: Steps

In Xanadu did Kubla Khan
A stately pleasure-dome decree:
Where Alph, the sacred river, ran
through caverns measureless to man
Down to a sunless sea.

Xanadu.txt: Sample file that we wil
l use to explain Byte Streams

public class CopyBytes

{

public static void main(String[] args) throws IOException

{

FileInputStream in = null;

FileOutputStream out = null;

try{

in = new FileInputStream("xanadu.txt");

out = new FileOutputStream("outagain.txt");

int c;

while ((c = in.read()) != -1){

out.write(c);

}

}

finally{

if (in != null){

in.close();

}

if (out != null){

out.close();

}

}

}

}

Byte Streams I/O: CopyBytes Example

Byte Streams – CopyBytes Example

 An int return type allows read() to

use -1 to indicate end of stream.

 A finally block is used to guarantee

that both streams will be closed

even if an error occurs; this helps

avoid resource leaks.

 If Java was unable to open one or

both files, the associated file

stream variable won’t deviate from

its initial null value; hence the test

for null in the finally block.

 Java 7’s try-with-resources would

be useful here.

public class CopyBytes

{

public static void main(String[] args) throws IOException

{

FileInputStream in = null;

FileOutputStream out = null;

try{

in = new FileInputStream("xanadu.txt");

out = new FileOutputStream("outagain.txt");

int c;

while ((c = in.read()) != -1){

out.write(c);

}

}

finally{

if (in != null){

in.close();

}

if (out != null){

out.close();

}

}

}

}

CopyBytes: Before using try-with-resources

public class CopyBytes

{

public static void main(String[] args) throws IOException

{

try (FileInputStream in = new FileInputStream("xanadu.txt");

FileOutputStream out = new FileOutputStream("outagain.txt"))

{

int c;

while ((c = in.read()) != -1){

out.write(c);

}

}

}

}

CopyBytes - using try-with-resources

try-with-resources is a new construct in Java 7.

When the try block finishes, the resources instantiated

in the try clause are closed automatically.

All classes implementing the java.lang.AutoCloseable

interface can be used inside the try-with-resources

construct.

Road Map

Introduction to I/O Streams

Byte-oriented I/O Streams

Character-oriented I/O Streams

Layered I/O Streams (e.g. buffering)

Line-oriented I/O Streams

Scanning

Pacemaker I/O

Further Reading:

Data Streams

Object Streams

Command Line I/O

Character-oriented Streams

Programs use character streams to perform

input and output of 16-bit bytes

(i.e. Unicode characters).

Character-oriented Streams

Java Stores characters as Unicode.

But the external data source could store

characters in other character sets e.g. US-ASCII,

UTF-8, etc.

Character stream I/O automatically translates

Unicode character values to and from the local

character set.

Working with character streams is no more

complicated than I/O with byte streams.

Character-oriented Streams

Character-oriented Streams: CopyCharacters Example
public class CopyCharacters{

public static void main(String[] args) throws IOException{

FileReader in = null;

FileWriter out = null;

try{

in = new FileReader("xanadu.txt");

out = new FileWriter("outchar.txt");

int c;

while ((c = in.read()) != -1){

out.write(c);

}

}

finally{

if (in != null){

in.close();

}

if (out != null){

out.close();

}

}

}

}

CopyCharacters using try-with-resources

CopyCharacters vs CopyBytes

 CopyCharacters is very similar to CopyBytes.

 CopyCharacters uses FileReader and FileWriter.

 CopyBytes uses FileInputStream and FileOutputStream.

CopyCharacters vs CopyBytes

 CopyCharacters is very similar to CopyBytes.

 CopyCharacters uses FileReader and FileWriter.

 CopyBytes uses FileInputStream and FileOutputStream.

 Both use an int variable to read to and write from.

 CopyCharacters int variable holds a character value between 0

and 65535.

 CopyBytes int variable holds a byte value between 0 and 255.

CopyCharacters vs CopyBytes

 CopyCharacters is very similar to CopyBytes.

 CopyCharacters uses FileReader and FileWriter.

 CopyBytes uses FileInputStream and FileOutputStream.

 Both use an int variable to read to and write from.

 CopyCharacters int variable holds a character value between 0

and 65535.

 CopyBytes int variable holds a byte value between 0 and 255.

 Character streams are often "wrappers" for byte streams.
 A byte stream to perform the physical I/O

 The character stream handles translation between characters and bytes.

Road Map

Introduction to I/O Streams

Byte-oriented I/O Streams

Character-oriented I/O Streams

Layered I/O Streams (e.g. buffering)

Line-oriented I/O Streams

Scanning

Pacemaker I/O

Further Reading:

Data Streams

Object Streams

Command Line I/O

Layered I/O Streams

 I/O streams are often layered (chained) with other I/O

streams e.g. for buffering, data-format conversion, etc.

http://www3.ntu.edu.sg/home/ehchua/programming/java/j5b_io.html

Buffered I/O

So far, we have only looked at reading/writing a

single character of data:

 grossly inefficient e.g. each call can trigger

a disk read/write.

To speed up the I/O, we can read/write blocks of

bytes into a memory buffer in one single I/O

operation.

http://www3.ntu.edu.sg/home/ehchua/programming/java/j5b_io.html

Buffered I/O

FileInputStream/FileOutputStream is not buffered.

But

You can chain it to a BufferedInputStream/

BufferedOutputStream to provide the buffering.

To chain streams, pass the instance of one stream

to the constructor of another.

http://www3.ntu.edu.sg/home/ehchua/programming/java/j5b_io.html

Buffered I/O - CopyCharacter

Flushing Buffers

 There are four buffered stream classes used to wrap
unbuffered streams:

BufferedInputStream and BufferedOutputStream for byte streams

BufferedReader and BufferedWriter for character streams

 It often makes sense to write out a buffer at critical points,
without waiting for it to fill.
This is known as flushing the buffer.

More info on flushing buffers here:
https://docs.oracle.com/javase/tutorial/essential/io/buffers.html

http://java.sun.com/javase/6/docs/api/java/io/BufferedInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedOutputStream.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedReader.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedWriter.html
https://docs.oracle.com/javase/tutorial/essential/io/buffers.html

Road Map

Introduction to I/O Streams

Byte-oriented I/O Streams

Character-oriented I/O Streams

Layered I/O Streams (e.g. buffering)

Line-oriented I/O Streams

Scanning

Pacemaker I/O

Further Reading:

Data Streams

Object Streams

Command Line I/O

Line-Oriented I/O

 Character I/O usually occurs in bigger units than single

characters.

 One common unit is the line:

 a string of characters with a line terminator at the end.

 A line terminator can be, depending on the OS:

 a carriage-return and line-feed sequence ("\r\n")

 a single carriage-return ("\r")

 a single line-feed ("\n").

java.io.BufferedReader

Supporting all possible line terminators

java.io.PrintWriter

Using this class, gives access to the

println series of methods; FileWriter

only ouptuts character by character.

Note: there is no PrintReader equivalent.

public static void main(String[] args) throws IOException

{

try(BufferedReader in =

new BufferedReader(new FileReader("xanadu.txt"));

PrintWriter out =

new PrintWriter(

new BufferedWriter(

new FileWriter("characteroutput.txt"))))

{

String l;

while ((l = in.readLine()) != null){

out.println(l);

}

}

}

Line-Oriented I/O Example (characters)

Road Map

Introduction to I/O Streams

Byte-oriented I/O Streams

Character-oriented I/O Streams

Layered I/O Streams (e.g. buffering)

Line-oriented I/O Streams

Scanning

Pacemaker I/O

Further Reading:

Data Streams

Object Streams

Command Line I/O

Scanning

 By default, a Scanner uses white space to separate

tokens.

To use a different token separator, invoke useDelimiter(),

specifying a regular expression (i.e. a sequence of

symbols and characters expressing a string/pattern).

Even though a scanner is not a stream, you need to close

it to indicate that you're done with its underlying stream.

ScanFile
public class ScanFile

{

public static void main(String[] args) throws IOException

{

Scanner s = null;

try

{

s = new Scanner(new BufferedReader(

new FileReader("xanadu.txt")));

while (s.hasNext())

{

System.out.println(s.next());

}

}

finally

{

if (s != null)

{

s.close();

}

}

}

}

This class reads in

the individual words in

the xanadu.txt file and

prints them out to the

console, one per line.

19

Translating Individual Tokens
public class ScanSum

{

public static void main(String[] args) throws IOException

{

Scanner s = null;

double sum = 0;

try{

s = new Scanner(new BufferedReader(new FileReader("usnumbers.txt")));

while (s.hasNext()){

if (s.hasNextDouble()){

sum += s.nextDouble();

}

else{

s.next();

}

}

}

finally{

s.close();

}

System.out.println(sum);

}

}

45

3

4

6

rogue text

8.4

3

more rogue text

6.46

usnumbers.txt

75.86

Console output

Road Map

Introduction to I/O Streams

Byte-oriented I/O Streams

Character-oriented I/O Streams

Layered I/O Streams (e.g. buffering)

Line-oriented I/O Streams

Scanning

Pacemaker I/O

Further Reading:

Data Streams

Object Streams

Command Line I/O

Abstract the mechanism

package utils;

public interface Serializer

{

void push(Object o);

Object pop();

void write() throws Exception;

void read() throws Exception;

}

Defining this interface will allow us to build different

serialization strategies e.g. XML, JSON, etc.

We can decide which to use at compile time, or at run

time.

Different Serializers
public class XMLSerializer implements Serializer

{

private Stack stack = new Stack();

private File file;

public XMLSerializer(File file)

{

this.file = file;

}

//more code

public class JSONSerializer implements Serializer

{

private Stack stack = new Stack();

private File file;

public JSONSerializer(File file)

{

this.file = file;

}

//more code

public class BinarySerializer

implements Serializer

{

private Stack stack = new Stack();

private File file;

public BinarySerializer(File file)

{

this.file = file;

}

Deciding at compile time

public Main() throws Exception

{

//XML Serializer

//File datastore = new File("datastore.xml");

//Serializer serializer = new XMLSerializer(datastore);

//JSON Serializer

//File datastore = new File("datastore.json");

//Serializer serializer = new JSONSerializer(datastore);

//Binary Serializer

File datastore = new File("datastore.txt");

Serializer serializer = new BinarySerializer(datastore);

Deciding at runtime

Welcome to pacemaker-console - ?help for instructions

pm> ?la

abbrev name params

lu list-users ()

cu create-user (first name, last name, email, password)

lu list-user (email)

lius list-user (id)

la list-activities (userid, sortBy: type, location, distance, date,

duration)

la list-activities (user id)

du delete-user (id)

aa add-activity (user-id, type, location, distance,

datetime, duration)

al add-location (activity-id, latitude, longitude)

cff change-file-format (file format: xml, json)

l load ()

s store ()

pm>

44

Binary Strategy

public class BinarySerializer implements ISerializationStrategy

{

public Object read(String filename) throws Exception

{

ObjectInputStream is = null;

Object obj = null;

try

{

is = new ObjectInputStream(new BufferedInputStream(

new FileInputStream(filename)));

obj = is.readObject();

}

finally

{

if (is != null)

{

is.close();

}

}

return obj;

}

//..

}

Binary Strategy (contd.)

45

public class BinarySerializer implements ISerializationStrategy

{

//..

public void write(String filename, Object obj) throws Exception

{

ObjectOutputStream os = null;

try

{

os = new ObjectOutputStream(new BufferedOutputStream(

new FileOutputStream(filename)));

os.writeObject(obj);

}

finally

{

if (os != null)

{

os.close();

}

}

}

}

XML Strategy

46

public class XMLSerializer implements ISerializationStrategy

{

public Object read(String filename) throws Exception

{

ObjectInputStream is = null;

Object obj = null;

try

{

XStream xstream = new XStream(new DomDriver());

is = xstream.createObjectInputStream(new FileReader(filename));

obj = is.readObject();

}

finally

{

if (is != null)

{

is.close();

}

}

return obj;

}

//...

}

XML Strategy (contd.)

47

public class XMLSerializer implements ISerializationStrategy

{

//...

public void write(String filename, Object obj) throws Exception

{

ObjectOutputStream os = null;

try

{

XStream xstream = new XStream(new DomDriver());

os = xstream.createObjectOutputStream(new FileWriter(filename));

os.writeObject(obj);

}

finally

{

if (os != null)

{

os.close();

}

}

}

}

Road Map

Introduction to I/O Streams

Byte-oriented I/O Streams

Character-oriented I/O Streams

Layered I/O Streams (e.g. buffering)

Line-oriented I/O Streams

Scanning

Pacemaker I/O

Further Reading:

Data Streams

Object Streams

Command Line I/O

Data Streams

Data streams support binary

I/O of primitive data type

values (boolean, char, byte,

short, int, long, float, and

double) as well as String

values.

All data streams implement

either the DataInput interface

or the DataOutput interface.

The most widely-used

implementations of these

interfaces are

DataInputStream and

DataOutputStream.

http://java.sun.com/javase/6/docs/api/java/io/DataInput.html
http://java.sun.com/javase/6/docs/api/java/io/DataOutput.html
http://java.sun.com/javase/6/docs/api/java/io/DataInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/DataOutputStream.html

DataStream (1)

public class DataStream

{

static final String dataFile = "invoicedata";

static final double[] prices = { 19.99, 9.99, 15.99, 3.99, 4.99 };

static final int[] units = { 12, 8, 13, 29, 50 };

static final String[] descs = { "Java T-shirt", "Java Mug",

"Duke Juggling Dolls",

"Java Pin", "Java Key Chain"};

public static void main(String[] args) throws IOException

{

DataOutputStream out = new DataOutputStream(

new BufferedOutputStream(new FileOutputStream(dataFile)));

for (int i = 0; i < prices.length; i++)

{

out.writeDouble(prices[i]);

out.writeInt(units[i]);

out.writeUTF(descs[i]);

}

out.close();

//…continued

31

DataStream (2)
//…continued

DataInputStream in = new DataInputStream(

new BufferedInputStream(

new FileInputStream(dataFile)));

double price;

int unit;

String desc;

double total = 0.0;

try

{

while (true)

{

price = in.readDouble();

unit = in.readInt();

desc = in.readUTF();

System.out.format("You ordered %d units of %s at $%.2f%n",

unit, desc, price);

total += unit * price;

}

}

catch (EOFException e)

{

System.out.println("End of file");

}

}

}

32

Data Streams Observations
 The writeUTF method writes out String values in a

modified form of UTF-8.
 A variable-width character encoding that only needs a single byte

for common Western characters.

Generally, we detect an end-of-file condition by catching
EOFException, instead of testing for an invalid return
value.

 Each specialized write in DataStreams is exactly matched
by the corresponding specialized read.

 Floating point numbers not recommended for monetary
values
In general, floating point is bad for precise values.

The correct type to use for currency values is
java.math.BigDecimal.

 Unfortunately, BigDecimal is an object type, so it won't
work with data streams – need Object Streams.

http://java.sun.com/javase/6/docs/api/java/io/EOFException.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html

Road Map

Introduction to I/O Streams

Byte-oriented I/O Streams

Character-oriented I/O Streams

Layered I/O Streams (e.g. buffering)

Line-oriented I/O Streams

Scanning

Pacemaker I/O

Further Reading:

Data Streams

Object Streams

Command Line I/O

33

Object Streams

 Data streams support I/O of primitive data types

 Object streams support I/O of objects
A class that can be serialized implements the marker interface

Serializable.

The object stream classes are ObjectInputStream and
ObjectOutputStream.
 An object stream can contain a mixture of primitive and object

values

If readObject() doesn't return the object type expected,
attempting to cast it to the correct type may throw a
ClassNotFoundException.

http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://java.sun.com/javase/6/docs/api/java/io/ObjectInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/ObjectOutputStream.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassNotFoundException.html

34

public class ObjectStreams

{

static final String dataFile = "invoicedata";

static final BigDecimal[] prices = {new BigDecimal("19.99"),

new BigDecimal("9.99"),

new BigDecimal("15.99"),

new BigDecimal("3.99"),

new BigDecimal("4.99") };

static final int[] units = { 12, 8, 13, 29, 50 };

static final String[] descs = { "Java T-shirt", "Java Mug",

"Duke Juggling Dolls",

"Java Pin", "Java Key Chain" };

public static void main(String[] args)

throws IOException, ClassNotFoundException

{

ObjectOutputStream out = null;

try

{

out = new ObjectOutputStream(

new BufferedOutputStream(new FileOutputStream(dataFile)));

out.writeObject(Calendar.getInstance());

for (int i = 0; i < prices.length; i++)

{

out.writeObject(prices[i]);

out.writeInt(units[i]);

out.writeUTF(descs[i]);

}

}

finally

{

out.close();

}

//…

}

ObjectStreams

35

ObjectInputStream in = null;

try

{

in = new ObjectInputStream(

new BufferedInputStream(new FileInputStream(dataFile)));

Calendar date = null;

BigDecimal price;

int unit;

String desc;

BigDecimal total = new BigDecimal(0);

date = (Calendar) in.readObject();

System.out.format("On %tA, %<tB %<te, %<tY:%n", date);

try

{

while (true)

{

price = (BigDecimal) in.readObject();

unit = in.readInt();

desc = in.readUTF();

System.out.format("You ordered %d units of %s at $%.2f%n",unit, desc, price);

total = total.add(price.multiply(new BigDecimal(unit)));

}

}

catch (EOFException e)

{

}

System.out.format("For a TOTAL of: $%.2f%n", total);

}

finally

{

in.close();

}

ObjectStreams

36

readObject() and writeObject()

 The writeObject and readObject methods contain some

sophisticated object management logic.

 This is particularly important for objects that contain

references to other objects.

 If readObject is to reconstitute an object from a stream, it

has to be able to reconstitute all the objects the original

object referred to.

 These additional objects might have their own references, and so

on.

 In this situation, writeObject traverses the entire web of

object references and writes all objects in that web onto

the stream. Thus a single invocation of writeObject can

cause a large number of objects to be written to the

stream.

37

 Suppose:

If writeObject is invoked to write a single object named a.

This object contains references to objects b and c,

while b contains references to d and e.

Invoking writeobject(a) writes a and all the objects necessary

to reconstitute a

When a is read by readObject, the other four objects are read

back as well, and all the original object references are

preserved.

Road Map

Introduction to I/O Streams

Byte-oriented I/O Streams

Character-oriented I/O Streams

Layered I/O Streams (e.g. buffering)

Line-oriented I/O Streams

Scanning

Pacemaker I/O

Further Reading:

Data Streams

Object Streams

Command Line I/O

21

Command Line I/O

 A program is often run from the command line, and

interacts with the user in the command line environment.

 The Java platform supports this kind of interaction in two

ways:

Standard Streams

Console

22

Standard Streams

 A feature of many operating systems, they read input from
the keyboard and write output to the display.

 They also support I/O on files and between programs.

 The Java platform supports three Standard Streams:
 Standard Input, accessed through System.in;

 Standard Output, accessed through System.out;

 Standard Error, accessed through System.err.

 These objects are defined automatically (do not need to
be opened)

 Standard Output and Standard Error are both for output

 Having error output separately allows the user to divert
regular output to a file and still be able to read error
messages.

23

System.in, System.out, System.err

For historical reasons, the standard streams are byte

streams (more logically character streams).

System.out and System.err are defined as PrintStream

objects.

 Although it is technically a byte stream, PrintStream

utilises an internal character stream object to emulate

many of the features of character streams.

 By contrast, System.in is a byte stream with no character

stream features.

 To utilise Standard Input as a character stream, wrap

System.in in InputStreamReader.

InputStreamReader cin = new InputStreamReader(System.in);

http://java.sun.com/javase/6/docs/api/java/io/PrintStream.html

24

Console

New in Java 6 - a more advanced alternative to the
Standard Streams

This is a single pre-defined object of type Console that
has most of the features provided by the Standard
Streams.

 The Console object also provides input and output
streams that are true character streams, through its
reader and writer methods.

 Before a program can use the Console, it must attempt to
retrieve the Console object by invoking System.console().
 If the Console object is available, this method returns it.

 If it returns NULL, then Console operations are not permitted,
either because the OS doesn't support them, or because the
program was launched in a non-interactive environment.

http://java.sun.com/javase/6/docs/api/java/io/Console.html

25

Password Entry

 The Console object supports secure password entry

through its readPassword method.

 This method helps secure password entry in two ways:

 It suppresses echoing, so the password is not visible on the users

screen.

 readPassword returns a character array, not a String, so that the

password can be overwritten, removing it from memory as soon

as it is no longer needed.

26

Password (1)

public class Password

{

public static void main(String[] args) throws IOException

{

Console c = System.console();

if (c == null)

{

System.err.println("No console.");

System.exit(1);

}

String login = c.readLine("Enter your login: ");

char[] oldPassword = c.readPassword("Enter your old password: ");

//..

}

}

27

Password (2)
//..

if (verify(login, oldPassword))

{

boolean noMatch;

do

{

char[] newPassword1 = c.readPassword("Enter your new password: ");

char[] newPassword2 = c.readPassword("Enter new password again: ");

noMatch = !Arrays.equals(newPassword1, newPassword2);

if (noMatch)

{

c.format("Passwords don't match. Try again.%n");

}

else

{

change(login, newPassword1);

c.format("Password for %s changed.%n", login);

}

Arrays.fill(newPassword1, ' ');

Arrays.fill(newPassword2, ' ');

}

while (noMatch);

}

Arrays.fill(oldPassword, ' ');

}

format method

System.out.format("The value of "

+ "the float variable is "

+ "%f, while the value of the "

+ "integer variable is %d, "

+ "and the string is %s",

 floatVar, intVar, stringVar);

Format specifiers begin with a percent sign (%)

and end with a converter.

https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html

28

Console Methods

Except where otherwise noted, this content is

licensed under a Creative Commons

Attribution-NonCommercial 3.0 License.

For more information, please see

http://creativecommons.org/licenses/by-nc/3.0/

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

