
Kotlin Syntax

Produced

by:

Department of Computing and Mathematics
http://www.wit.ie/

Dr. Siobhán Drohan (sdrohan@wit.ie)

mailto:sdrohan@wit.ie

Kotlin Syntax

Sources: http://kotlinlang.org/docs/reference/basic-syntax.html

http://petersommerhoff.com/dev/kotlin/kotlin-for-java-devs/

http://kotlinlang.org/docs/reference/basic-syntax.html
http://petersommerhoff.com/dev/kotlin/kotlin-for-java-devs/

Agenda

• Basic Types

• Local Variables (val & var)

• Functions

• Control Flow (if, when, for, while)

• Strings & String Templates

• Ranges (and the in operator)

• Type Checks & Casts

• Null Safety

• Comments

Basic Types

Numbers, characters and booleans.

Basic Types

In Kotlin, everything is an
object in the sense that we
can call member functions

and properties on any
variable.

Basic Types - Numbers

Basic Types - Numbers

val doubleNumber: Double = 100.45

val floatNumber: Float = 100.45f

val longNumber: Long = 100

val intNumber: Int = 100

val shortNumber: Short = 100

val byteNumber: Byte = 100

Explicitly defining a
numeric type

Basic Types - Numbers

val doubleNumber = 100.45

val floatNumber = 100.45f

val longNumber = 100L

val intNumber = 100

val shortNumber = 100

val byteNumber = 100

Type
inference

Basic Types - Numbers

val doubleNumber = 100.45

val floatNumber = 100.45f

val longNumber = 100L

val intNumber = 100

val shortNumber = 100

val byteNumber = 100

println("doubleNumber type is: " + doubleNumber.javaClass)

println("floatNumber type is: " + floatNumber.javaClass)

println("longNumber type is: " + longNumber.javaClass)

println("intNumber type is: " + intNumber.javaClass)

println("shortNumber type is: " + shortNumber.javaClass)

println("byteNumber type is: " + byteNumber.javaClass)

Type
inference

Basic Types - Numbers

val oneMillion = 1_000_000

val threeThousand = 3_000

val creditCardNumber = 1234_4321_5678_8765

fun main(args : Array<String>)

{

println("" + oneMillion + " - the type is: " + oneMillion.javaClass)

println("" + threeThousand + " - the type is: " + threeThousand.javaClass)

println("" + creditCardNumber + " - the type is: " + creditCardNumber.javaClass)

}

You can use
underscores to
make number

constants more
readable.

Basic Types – Numbers: Explicit Conversions

In Kotlin, there are no implicit widening conversions for numbers i.e.
smaller types (e.g. Byte) are not subtypes of bigger ones (e.g. Int)

 smaller types are NOT implicitly converted to bigger types.

Basic Types – Numbers: Explicit Conversions

In Kotlin, there are no implicit widening conversions for numbers i.e.
smaller types (e.g. Byte) are not subtypes of bigger ones (e.g. Int)

 smaller types are NOT implicitly converted to bigger types.

BUT, we can use explicit conversions to widen numbers

val byteNumber: Byte = 10 //static type check: OK

val intNumber: Int = byteNumber //syntax error

val byteNumber: Byte = 10 //static type check: OK

val intNumber: Int = byteNumber.toInt() //OK

Basic Types – Numbers: Explicit Conversions

Every number type supports the following conversions:

• toByte(): Byte

• toShort(): Short

• toInt(): Int

• toLong(): Long

• toFloat(): Float

• toDouble(): Double

• toChar(): Char

//Explicit Conversion

val intNumber: Int = byteNumber.toInt()

val floatNumber: Float = byteNumber.toFloat()

Basic Types – Characters

val aChar = 'a'

val bChar: Char = 'b'

fun main(args : Array<String>)

{

println("" + aChar + " - the type is: " + aChar.javaClass)

println("" + bChar + " - the type is: " + bChar.javaClass)

}

Basic Types – Booleans

val aFlag = true

val bFlag: Boolean = false

fun main(args : Array<String>)

{

println("" + aFlag + " - the type is: " + aFlag.javaClass)

println("" + bFlag + " - the type is: " + bFlag.javaClass)

}

Basic Types – Escape Characters

Special characters can be escaped using a backslash:

\t \b \n \r \’ \“ \\ \$

val aFlag= true

val bFlag: Boolean = false

fun main(args : Array<String>)

{

println("" + aFlag + " - the type is: \n\t\t" + aFlag.javaClass)

println("" + bFlag + " - the type is: \n\t\t" + bFlag.javaClass)

}

Local Variables

val (read-only) and var (mutable)

Local Variables – val (read-only)

Local Variables – val (read-only)

Local Variables – var (mutable)

Local Variables – var (mutable)

Functions

Parameters, return types, expression body, inferred return type

Functions – parameters and return types

Functions – expression body, inferred return type

fun sum(a: Int, b: Int) = a + b

fun main(args: Array<String>) {

println("sum of 19 and 23 is ${sum(19, 23)}")

println("sum of 19 and 23 is " + sum(19, 23))

}

Function “sum” with an expression
body and inferred return type

Functions – no return data

Control Flow

if, when, for, while

Control Flow – if

The traditional
way to write if’s

Control Flow – if

HOWEVER….in Kotlin, if is an expression, i.e. it returns a
value. Therefore there is no ternary operator (condition ?

then : else), because ordinary if works fine in this role.

The traditional
way to write if’s

Control Flow – if

Using if as an
expression

Control Flow – if

Some examples
without using

functions.

The first two
examples use if as a

statement.

The last example
uses if as an
expression.

Control Flow – if

if branches can also be blocks.
The last expression is the value of a block:

val a = 10;

val b = 5;

val max = if (a > b) {

print ("Choose a")

a

}

else {

print ("Choose b")

b

}

Control Flow – if

if branches can also be blocks.
The last expression is the value of a block:

When if is used as
an expression, the

else part is
mandatory.

val a = 10;

val b = 5;

val max = if (a > b) {

print ("Choose a")

a

}

else {

print ("Choose b")

b

}

Control Flow – when

val x = 10;

when (x){

1 -> print("x is 1")

2 -> print("x is 2")

in 3..10 -> print ("x is between 3 and 10")

}

Replaces
switch in

Java

Control Flow – when

Control Flow – when

Branch conditions may be
combined with a comma.

We can use arbitrary
expressions (not only constants)
as branch conditions.

We can also check a value
for being in or !in a range
or a collection.

http://kotlinlang.org/docs/reference/ranges.html

Control Flow – when

Another possibility is
to check that a value
is or !is of a particular
type.

val x = "I am a String"

val contains = when (x){

is String -> x.contains("I am a")

else -> false

}

println(contains)

Control Flow – when

when can also be used as a replacement for an if-else if chain.

If no argument is supplied, the branch conditions are simply boolean
expressions, and a branch is executed when its condition is true.

val aString = "I am a String"

when {

aString.equals("I am a String") -> println("Equal");

else -> println("Not Equal")

}

Control Flow – when

Control Flow – for

The for loop iterates through anything that provides an
iterator. It is similar to the for-each loop in Java.

Control Flow – for

If you want to iterate through
an array or a list with an index,
you can do it this way:

Control Flow – for

Alternatively, you can use the

withIndex library function:

fun main(args: Array<String>) {

val items = listOf("apple", "banana", "kiwi")

for ((index, value) in items.withIndex()) {

println("the element at ${index} is ${value}")

}

}

Control Flow – while

The while and do-while work as usual:

Note: Kotlin also supports traditional break and continue operators in loops.

Control Flow – while

val items = listOf("apple", "banana", "kiwi")

var index = 0

while (index < items.size){

println("item at $index is ${items[index]}")

index++

}

Strings and String Templates

Escaped strings, raw strings, literals, templates

Strings

• Strings are represented by the type String.

• Strings are immutable.

• Elements of a string are characters that can be accessed by the

indexing operation: s[i].

• A string can be iterated over with a for-loop:

https://stackoverflow.com/questions/1552301/immutability-of-strings-in-java

String Literals

• Kotlin has two types of string literals:
escaped strings that may have escaped characters in them and
raw strings that can contain newlines and arbitrary text.

String Literals

• Kotlin has two types of string literals:
escaped strings that may have escaped characters in them and
raw strings that can contain newlines and arbitrary text.

An escaped string is very much like
a Java string

A raw string is delimited by a triple
quote (“””), contains no escaping
and can contain new lines and any
other characters.

String Literals

You can remove

leading whitespace

with trimMargin()

String Literals

By default | is used as margin prefix, but you can choose

another character and pass it as a parameter like

trimMargin(">").

val text = """

> Tell me and I forget.

> Teach me and I remember.

> Involve me and I learn.

> (Benjamin Franlkin)

""".trimMargin(">")

print(text)

Note the impact of the
two spaces we put

between > and the text

String Templates

• Strings may contain template expressions, i.e. pieces of code that

are evaluated and whose results are concatenated into the string.

• A template expression starts with a dollar sign ($) and consists of

either a simple name:

• or an arbitrary expression in curly braces:

String Templates

Templates are supported both inside raw strings and inside escaped

strings.

val anInt = 10

val aString = "Value of anInt is ${anInt}\n"

val text = """

> Tell me and I forget.

> Teach me and I remember.

> Involve me and I learn.

> (Benjamin Franlkin)

""".trimMargin(">")

print(aString)

print(text)

String Templates

“a is 1”
s1

Ranges

The in operator

Range

Check if a number
is within a range
using in operator:

Check if a

number is

out of range:

Range

Iterating over
a range:

Iterating over
a progression:

Type Checks & Casts

is and !is operators

fun main(args: Array<String>) {

val aString = "I am a String"

if (aString is String) {

println("String length is: ${aString.length}")

}

if (aString !is String) { // same as !(aString is String)

print("Not a String")

}

else {

println("String length is: ${aString.length}")

}

}

Smart Casts (an example using if)

fun main(args: Array<String>) {

demo ("I am a String")

demo (12)

}

fun demo(x: Any) {

if (x is String) {

println(x.length) // x is automatically cast to String

}

else{

println(x.javaClass)

}

}

Smart Casts (an example using when)

fun main(args: Array<String>) {

demo (12)

demo ("I am a String")

demo (intArrayOf(1,2,3,4))

}

fun demo(x: Any) {

when (x) {

is Int -> println(x + 1)

is String -> println(x.length + 1)

is IntArray -> println(x.sum())

}

}

Null

Using nullable values and checking for null

Null Safety

In Kotlin, the type system distinguishes

between references that can hold
null (nullable references)

and those that
cannot (non-null references).

The Kotlin compiler makes sure you don’t, by accident,
operate on a variable that is null.

Null Safety – a non-null reference

var a: String = "abc"

a = null // syntax error

A regular variable of
type String can not

hold null

val l = a.length

Calling a method /

accessing a property
on variable a, is

guaranteed not to

cause an
NullPointerException

Null Safety – a nullable reference

To allow nulls, we

can declare a variable

as nullable string,

written String?

var b: String? = "abc"

b = null // ok

val l = b.length // syntax error: variable

//'b' can be null

// …many ways around this…

Null Safety – a nullable reference

To allow nulls, we

can declare a variable

as nullable string,

written String?

var b: String? = "abc"

b = null // ok

val l = if (b != null) b.length else -1

Option 1: you can explicitly check if b is null,
and handle the two options separately:

Null Safety – a nullable reference

To allow nulls, we

can declare a variable

as nullable string,

written String?

var b: String? = "abc"

b = null // ok

b?.length

Option 2: you can use the safe call operator ?.
This returns b.length if b is not null, and null otherwise.

Null Safety – a nullable reference

To allow nulls, we

can declare a variable

as nullable string,

written String?

var b: String? = "abc"

b = null // ok

Option 3: you can use the !! Operator. This force a

call to our method and will return a non-null value
of b or throw an NPE if b is null. Use sparingly!

val l = b!!.length

:

Null Safety – The Elvis Operator, ?:

:

When we have a nullable reference r, we can say:

"if r is not null, use it, otherwise use some non-null value x"

val l: Int = if (b != null) b.length else -1

Null Safety – The Elvis Operator, ?:

:

When we have a nullable reference r, we can say:

"if r is not null, use it, otherwise use some non-null value x"

val l: Int = if (b != null) b.length else -1

Along with the complete if-expression, this can be expressed

with the Elvis operator, written ?:

val l = b?.length ?: -1

If the expression to the left of ?: is not null, the elvis operator

returns it, otherwise it returns the expression to the right.

Nullable – nullable returns

Return null if the return value
does not hold an integer:

A reference must be explicitly marked as

nullable (i.e. ?) when null value is possible.

Comments

Single line, block, KDoc

Comments – single line and block comments

Comments – KDoc (equivalent to JavaDoc)

Comments – KDoc

Block tags Currently supported KDoc block tags

@param <name> Documents a value parameter of a function or a type parameter of a class, property or
function.

@return Documents the return value of a function.

@constructor Documents the primary constructor of a class.

@receiver Documents the receiver of an extension function.

@property <name> Documents the property of a class which has the specified name.

@throws <class>,
@exception <class>

Documents an exception which can be thrown by a method.

@sample <identifier> Embeds the body of the function with the specified qualified name into the
documentation for the current element, in order to show an example of how the
element could be used.

@see <identifier> Adds a link to the specified class or method to the See Also block of the documentation.

@author Specifies the author of the element being documented.

@since Specifies the version of the software in which the element being documented was
introduced.

@suppress Excludes the element from the generated documentation. Can be used for elements
which are not part of the official API of a module but still have to be visible externally.

For more info: http://kotlinlang.org/docs/reference/kotlin-doc.html

http://kotlinlang.org/docs/reference/kotlin-doc.html

Except where otherwise noted, this content is

licensed under a Creative Commons

Attribution-NonCommercial 3.0 License.

For more information, please see

http://creativecommons.org/licenses/by-

nc/3.0/

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

