
Interface Segregation Principle (ISP)

Produced

by:

Department of Computing and Mathematics

http://www.wit.ie/

Dr. Siobhán Drohan (sdrohan@wit.ie)

Eamonn de Leastar (edeleastar@wit.ie)

mailto:sdrohan@wit.ie
mailto:edeleastar@wit.ie

SOLID Class Design Principles

In this talk, we will refer to the

SOLID principles examples in this

book and also this website.

SOLID  five principles for object-

oriented class design i.e.

best guidelines for building a

maintainable object-oriented

system.

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

S Single Responsibility Principle (SRP). Classes should have one, and only one,

reason to change. Keep your classes small and single-purposed.

O Open-Closed Principle (OCP). Design classes to be open for extension but

closed for modification; you should be able to extend a class without

modifying it. Minimize the need to make changes to existing classes.

L Liskov Substitution Principle (LSP). Subtypes should be substitutable for their base

types. From a client’s perspective, override methods shouldn’t break functionality.

I Interface Segregation Principle (ISP). Clients should not be forced to depend

on methods they don’t use. Split a larger interface into a number of smaller

interfaces.

D Dependency Inversion Principle (DIP). High-level modules should not depend on

low-level modules; both should depend on abstractions. Abstractions should not

depend on details; details should depend on abstractions.

SOLID Class Design Principles

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

Interface Segregation Principle (ISP) – Basic Principle

“Don’t depend

on things

you don’t

need”

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

Interface Segregation Principle (ISP) – Basic Principle

Clients should not be forced to depend upon

interface members they do not use.

Instead, create multiple,

smaller, cohesive interfaces.

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

Interface Segregation Principle (ISP) – Basic Principle

Clients should not be forced to depend upon

interface members they do not use.

Instead, create multiple,

smaller, cohesive interfaces.

Smaller interfaces are easier to implement 

improves flexibility and the possibility of reuse.

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

Example 1 -

A Basic ATM

ISP – Example 1 – A Basic ATM

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

Assume that messages can be

displayed at different times

during an ATM transaction e.g.

• Login

• Withdrawal

• Deposit

• etc.

Picture an ATM machine which

has a screen where we wish to

display different messages.

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

ISP – Example 1 – A Basic ATM

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

Possible Interface Solution:

public interface Messenger {

void askForCard();

void tellInvalidCard();

void askForPin();

void tellInvalidPin();

void tellCardWasSiezed();

void askForAccount();

void tellNotEnoughMoneyInAccount();

void tellAmountDeposited();

void tellBalance();

}

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

ISP – Example 1 – A Basic ATM

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

Possible Interface Solution:

public interface Messenger {

void askForCard();

void tellInvalidCard();

void askForPin();

void tellInvalidPin();

void tellCardWasSiezed();

void askForAccount();

void tellNotEnoughMoneyInAccount();

void tellAmountDeposited();

void tellBalance();

}

Fat Interface

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

ISP – Example 1 – A Basic ATM

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

public interface Messenger {

void askForCard();

void tellInvalidCard();

void askForPin();

void tellInvalidPin();

void tellCardWasSiezed();

void askForAccount();

void tellNotEnoughMoneyInAccount();

void tellAmountDeposited();

void tellBalance();

}

BUT…we have grouped unrelated

functionality together…yes, they are all

messages, but they occur at different times

during an ATM transaction.

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

ISP – Example 1 – A Basic ATM

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

public interface Messenger {

void askForCard();

void tellInvalidCard();

void askForPin();

void tellInvalidPin();

void tellCardWasSiezed();

void askForAccount();

void tellNotEnoughMoneyInAccount();

void tellAmountDeposited();

void tellBalance();

}

BUT…we have grouped unrelated

functionality together…yes, they are all

messages, but they occur at different times

during an ATM transaction.

e.g. login

Messages

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

ISP – Example 1 – A Basic ATM

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

public interface Messenger {

void tellCardWasSiezed();

void askForAccount();

void tellNotEnoughMoneyInAccount();

void tellAmountDeposited();

void tellBalance();

}

Refactoring the Interfaces (1st pass)…

public interface LoginMessenger {

void askForCard();

void tellInvalidCard();

void askForPin();

void tellInvalidPin();

}

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

ISP – Example 1 – A Basic ATM

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

public interface ErrorMessenger {

void tellCardWasSiezed();

}

Refactoring the Interfaces (2nd pass)…

public interface AccountMessenger {

void askForAccount();

void tellNotEnoughMoneyInAccount();

void tellAmountDeposited();

void tellBalance();

}

public interface LoginMessenger {

void askForCard();

void tellInvalidCard();

void askForPin();

void tellInvalidPin();

}

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

ISP – Example 1 – A Basic ATM

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

Refactoring the Interfaces (3rd pass)…

public interface AccountMessenger {

void askForAccount();

void tellBalance();

}

public interface LoginMessenger {

void askForCard();

void tellInvalidCard();

void askForPin();

void tellInvalidPin();

}

public interface DepositMessenger {

void tellAmountDeposited();

}

public interface WithdrawalMessenger {

void tellNotEnoughMoneyInAccount();

}

public interface ErrorMessenger {

void tellCardWasSiezed();

}

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

ISP – Example 1 – A Basic ATM

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

Using the Interfaces…

• Just choose which interface(s) are appropriate for the implementing class!

• Having refactored our interfaces, we are not forced to provide

implementations for methods that we don’t need.

public class Messenger implements LoginMessenger, WithdrawalMessenger

{

//concrete implementations of the methods listed in the interfaces above.

}

public interface LoginMessenger {

void askForCard();

void tellInvalidCard();

void askForPin();

void tellInvalidPin();

}

public interface WithdrawalMessenger {

void tellNotEnoughMoneyInAccount();

}

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

Example 2 -

An Advanced ATM

ISP – Example 2 – An Advanced ATM

We now want ATM output to be:

• Printed on a variety of devices i.e. screen,

braille tablet & speech synthesizer.

ISP – Example 2 – An Advanced ATM

We now want ATM output to be:

• Printed on a variety of devices i.e. screen,

braille tablet & speech synthesizer.

ISP – Example 2 – An Advanced ATM

Consider also that all ATM transactions are

concrete implementations of the abstract

Transaction class.

ISP – Example 2 – An Advanced ATM

Consider also that all ATM transactions are

concrete implementations of the abstract

Transaction class.

ISP – Example 2 – An Advanced ATM

Assume now that each

concrete transaction class

invokes UI methods.

For example:

• In order to ask the user to

enter the amount to be

deposited, the

DepositTransaction object

invokes the

RequestDepositAmount

method of the UI class.

ISP – Example 2 – An Advanced ATM

Now consider that we need a

new transaction, say,

PayGasBillTransaction.

We would need to add new

methods to the UI interface to

deal with messages associated

with the new transaction.

See any problems???

ISP – Example 2 – An Advanced ATM

Problem:

Since DepositTransaction,

WithdrawalTransaction, and

TransferTransaction all use the

same UI interface, we are

going to have to rebuild them,

with code for the new

methods.

If any of these transactions are

components in other systems,

we would have to redeploy,

etc.

ISP – Example 2 – An Advanced ATM

Solution:

We can avoid this

unfortunate scenario

by segregating the UI

interface into multiple

interfaces.

These separate interfaces

can then be multiply

inherited into the final UI

interface.

Interface Segregation Principle (ISP) - Recap

Clients should not be forced

to depend upon interface

members they do not use.

Interface Segregation Principle (ISP) - Recap

• Interfaces that are not cohesive are “fat”.

• ISP does not like "fat" interfaces.

• Break up “fat” interfaces into groups of cohesive
methods.

Clients should not be forced

to depend upon interface

members they do not use.

Except where otherwise noted, this content is

licensed under a Creative Commons Attribution-

NonCommercial 3.0 License.

For more information, please see

http://creativecommons.org/licenses/by-nc/3.0/

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

