
FIRST Principles

Produced

by:

Department of Computing and Mathematics

http://www.wit.ie/

Dr. Siobhán Drohan (sdrohan@wit.ie)

Eamonn de Leastar (edeleastar@wit.ie)

mailto:sdrohan@wit.ie
mailto:edeleastar@wit.ie

FIRST Principles

Characteristics of quality tests:

• [F]ast

• [I]solate your tests

• [R]epeatable

• [S]elf-validating

• [T]imely

Source Code: https://pragprog.com/titles/utj2/source_code

https://pragprog.com/titles/utj2/source_code

[F]IRST: [F]ast

• Consider this scenario:

• 2500 unit tests

• Average test takes 200 ms

 approx. 8 minutes to run test suite.

• Are you going to run an 8-minute suite of tests multiple times a day?

[F]IRST: [F]ast

• Consider this scenario:

• 2500 unit tests

• Average test takes 200 ms

 approx. 8 minutes to run test suite.

• Are you going to run an 8-minute suite of tests multiple times a day?

• As your system grows, your unit tests will take

longer and longer to run: 8 minutes easily

turns into 15 or even 30.

[F]IRST: [F]ast

• Tipping Point: When your unit tests reach the point where it’s painful

to run them more than a couple times per day, you’ve tipped the scale

in the wrong direction.

[F]IRST: [F]ast

• Tipping Point: When your unit tests reach the point where it’s painful

to run them more than a couple times per day, you’ve tipped the scale

in the wrong direction.

• Value/Health Diminishes: The value of your suite of unit tests

diminishes as their ability to provide continual, comprehensive, and fast

feedback about the health of your system also diminishes.

[F]IRST: [F]ast

• Tipping Point: When your unit tests reach the point where it’s painful

to run them more than a couple times per day, you’ve tipped the scale

in the wrong direction.

• Value/Health Diminishes: The value of your suite of unit tests

diminishes as their ability to provide continual, comprehensive, and fast

feedback about the health of your system also diminishes.

• Confidence Diminishes: When you allow your tests to fall out of

favour, you and your team will question the investment you made to

create them.

[F]IRST: [F]ast Recommendations

• Keep your tests fast!

• Keep your design clean

• minimize the dependencies on code that executes slowly.

[F]IRST: [F]ast Recommendations

• Keep your tests fast!

• Keep your design clean

• minimize the dependencies on code that executes slowly.

• If all your tests interact with code that ultimately always makes

a database call, all your tests will be slow.

• This is where the Mock Objects technique can excel (more on

this later).

FIRST Principles

Characteristics of quality tests:

• [F]ast

• [I]solate your tests

• [R]epeatable

• [S]elf-validating

• [T]imely

Source Code: https://pragprog.com/titles/utj2/source_code

https://pragprog.com/titles/utj2/source_code

F[I]RST: [I]solate your tests

• Good unit tests focus on a small chunk of code to verify (i.e. cohesive):

• That’s in line with our definition of unit; the more code that your test

interacts with, directly or indirectly, the more things are likely to go awry.

F[I]RST: [I]solate your tests

• Good unit tests focus on a small chunk of code to verify (i.e. cohesive):

• That’s in line with our definition of unit; the more code that your test

interacts with, directly or indirectly, the more things are likely to go awry.

• You should be able to run any one test at any time, in any order:

• Good unit tests also don’t depend on other unit tests (or test cases within

the same test method). You might think you’re speeding up your tests by

carefully crafting their order so that several tests can reuse some of the

same expensively constructed data. But you’re simultaneously creating an

evil chain of dependencies. When things go wrong—and they will—you’ll

spend piles of time figuring out which one thing buried in a long chain of

prior events caused your test to fail.

F[I]RST: [I]solate your tests

Single Responsibility Principe (SRP) and Testing:

• SRP: classes should have only one reason to change.

F[I]RST: [I]solate your tests

Single Responsibility Principe (SRP) and Testing:

• SRP: classes should have only one reason to change.

• SRP provides great guideline for your test methods also. If one of your

test methods can break for more than one reason, consider splitting it into

separate tests. When a focused unit test breaks, it’s usually obvious why.

F[I]RST: [I]solate your tests

Single Responsibility Principe (SRP) and Testing:

• SRP: classes should have only one reason to change.

• SRP provides great guideline for your test methods also. If one of your

test methods can break for more than one reason, consider splitting it into

separate tests. When a focused unit test breaks, it’s usually obvious why.

• It’s easy to keep your tests focused and independent if each test

concentrates only on a small amount of behaviour.

• When you start to add a second assert to a test, ask yourself, “Does

this assertion help to verify a single behaviour, or does it represent a

behaviour that I could describe with a new test name?”

F[I]RST: [I]solate your tests

• Consider this database access scenario:

• The code you’re testing might interact with other code that reads
from a database.

• Data dependencies create a whole host of problems. Tests that must
ultimately depend on a database require you to ensure that the
database has the right data.

• If your data source is shared, you have to worry about external
changes (maybe out of your control) breaking your tests. Don’t forget
that other developers are often running their tests at the same time!
Simply interacting with an external store increases the likelihood that
your test will fail for availability or accessibility reasons.

FIRST Principles

Characteristics of quality tests:

• [F]ast

• [I]solate your tests

• [R]epeatable

• [S]elf-validating

• [T]imely

Source Code: https://pragprog.com/titles/utj2/source_code

https://pragprog.com/titles/utj2/source_code

FI[R]ST: Good tests should be [R]epeatable

• In test design, you provide an assertion that specifies what the outcome

should be each and every time the test is run.

FI[R]ST: Good tests should be [R]epeatable

• In test design, you provide an assertion that specifies what the outcome

should be each and every time the test is run.

• A repeatable test is one that produces the same results each time you

run it.

• Without repeatability, you might be in for some surprises at the worst

possible moments.

• What’s worse, these sort of surprises are usually bogus—it’s not

really a bug, it’s just a problem with the test.

• You can’t afford to waste time chasing down phantom problems.

FI[R]ST: Good tests should be [R]epeatable

• To accomplish repeatable tests, you must isolate them from anything

in the external environment not under your direct control; your system

will inevitably need to interact with elements not under your control,

however.

• We can use a mock object as one way to isolate the rest of the code

under test and keep it independent from the volatility of time.

FI[R]ST: Good tests should be [R]epeatable

Consider this scenario…testing timestamps:

• Timestamps are moving targets, making it a bit of a challenge to assert

what the creation timestamp should be.

• Well, we can’t stop time, but we can fake it out. Or rather, we can fake

out our code to think it’s getting the real time, when it instead obtains

the current time from a different source.

We will use the Java 8, java.time.Clock object to demonstrate faking.

FI[R]ST: Good tests should be [R]epeatable

java.time.Clock

• Allows alternate clocks to be plugged in as and when required.

• Simplifies testing by modelling a single instantaneous point on the

time-line.

FI[R]ST: Good tests should be [R]epeatable

public class QuestionController {

private Clock clock = Clock.systemUTC();
// ...
public int addBooleanQuestion(String text) {

return persist(new BooleanQuestion(text));
}

void setClock(Clock clock) {
this.clock = clock;

}
// ...
private int persist(Persistable object) {

object.setCreateTimestamp(clock.instant());
executeInTransaction((em) -> em.persist(object));
return object.getId();

}
}

iloveyouboss/16-branch-persistence/src/iloveyouboss/controller/QuestionController.java

The code we want to test

FI[R]ST: Good tests should be [R]epeatable

Creates an Instant instance
and stores it in the now
local variable.

When asked for the time, it will always return the now Instant—
because the test previously injected it into the controller through the
setter method.

Injects the
now Instant
into the
controller via
the setter
method.

FI[R]ST: Good tests should be [R]epeatable

• The persist() method obtains an instant from the injected clock instance and
passes it along to the setCreateTimestamp() method.

• If no client code injects a Clock instance using setClock(), the clock defaults
to the systemUTC clock as initialized at the field level.

• Voila! The QuestionController doesn’t know anything about the nature of the
Clock, only that it answers the current Instant.

• The clock used by the test acts as a test double—a stand-in for the real
thing.

private int persist(Persistable object) {
object.setCreateTimestamp(clock.instant());
executeInTransaction((em) -> em.persist(object));
return object.getId();

}

FIRST Principles

Characteristics of quality tests:

• [F]ast

• [I]solate your tests

• [R]epeatable

• [S]elf-validating

• [T]imely

Source Code: https://pragprog.com/titles/utj2/source_code

https://pragprog.com/titles/utj2/source_code

FIR[S]T: [S]elf-Validating

• Tests aren’t tests unless they assert that things went as expected:

• Avoid the temptation to manually verify the results of tests.

• Test should also be self-arranging; you must automate any setup

your test requires. But remember the [I]solated part of FIRST:

• tests requiring external setup (e.g. use of external db) violates [I].

• any setup must ensure that you can run any one test at any time,

in any order.

FIR[S]T: [S]elf-Validating

• For self-validating, the sky’s the limit…as an ideal, imagine a system

where:

• you write tests for all changes you make.

• whenever you integrate the code into your source repository, a build

automatically kicks off and runs all the tests (unit and otherwise),

indicating that your system is acceptably healthy.

• the build server takes that vote of confidence and goes one step

further, deploying your change to production.

• Embracing such continuous delivery (CD) approaches can significantly

reduce the overhead of taking a need from inception to deployed

product.

Infinitest tool for IDEs

As you make changes to your system, Infinitest identifies and runs (in the background) any

tests that are potentially impacted. With Infinitest, testing moves from being a proactive

task to being a gating criterion, much like compilation, that prevents you from doing

anything further until you’ve fixed a reported problem.

CI Tools – Jenkins, TeamCity

• On an even larger scale, you can
use a continuous integration (CI)
tool such as Jenkins or TeamCity.

• A CI tool watches your source
repository and kicks off a
build/test process when it
recognises changes.

http://jenkins-ci.org/

Suite of Videos on TeamCity:

https://www.jetbrains.com/teamcity/documentation/

https://www.jetbrains.com/teamcity/

http://jenkins-ci.org/
https://www.jetbrains.com/teamcity/documentation/

Behaviour Driven Development (BDD) tool

• A tool that facilitates BDD: https://cucumber.io/school

https://cucumber.io/school

JIRA (https://www.atlassian.com/software/jira)

JIRA (https://www.atlassian.com/software/jira)

SonarCube (http://www.sonarqube.org/)

SonarCube helps control

your Technical Debt.

Wikipedia: Technical debt is

"a concept in programming

that reflects the extra

development work that arises

when code that is easy to

implement in the short run is

used instead of applying the

best overall solution.”

FIRST Principles

Characteristics of quality tests:

• [F]ast

• [I]solate your tests

• [R]epeatable

• [S]elf-validating

• [T]imely

Source Code: https://pragprog.com/titles/utj2/source_code

https://pragprog.com/titles/utj2/source_code

FIRS[T]: [T]imely

• You can write unit tests at virtually any time. You should focus

on writing unit tests in a timely fashion.

• Many test-infected dev teams have guidelines or strict rules

around unit testing. Some use review processes or even

automated tools to reject code without sufficient tests.

• Keeping atop good practices like unit testing requires continual

vigilance.

Except where otherwise noted, this content is

licensed under a Creative Commons Attribution-

NonCommercial 3.0 License.

For more information, please see

http://creativecommons.org/licenses/by-nc/3.0/

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

