FIRST Principles

Produced Dr. Siobhan Drohan (sdrohan@wit.ie)
by:

Eamonn de Leastar (edeleastar@wit.ie)

|]
| ’ Waterford Institute of Technology Department of Computing and Mathematics
W/ . INSTITIOID TEICNEOLAIOCHTA PHORT LAIRGE http://www.wit.ie/

:
- -

o Wl
ey oL
T ey i

qu'“IEI; —am

mailto:sdrohan@wit.ie
mailto:edeleastar@wit.ie

FIRST Principles

Characteristics of quality tests:

[Flast

[l]solate your tests

[R]epeatable

* [S]elf-validating

« [T]imely

The
Pralggér%gnmers

Pragmatic Unit Testin
in Java 8 with JUnit

s

Jeff Langr

with Andy Hunt
& Dave Thomas

edited by
Susannah Davidson Pfalzer

Source Code: https://pragprog.com/titles/utj2/source code

https://pragprog.com/titles/utj2/source_code

IF]IRST: [Flast

e Consider this scenario:
e 2500 unit tests
* Average test takes 200 ms

—> approx. 8 minutes to run test suite.

« Are you going to run an 8-minute suite of tests multiple times a day?

73‘

IF]IRST: [Flast

 Consider this scenario:

« 2500 unit tests
* Average test takes 200 ms
—> approx. 8 minutes to run test suite.

« Are you going to run an 8-minute suite of tests multiple times a day?

« As your system grows, your unit tests will take (’/~ P,
longer and longer to run: 8 minutes easily Vo, 7 % %
turns into 15 or even 30.

IF]IRST: [Flast

* Tipping Point: When your unit tests reach the point where it's painful
to run them more than a couple times per day, you've tipped the scale
In the wrong direction.

IF]IRST: [Flast

* Tipping Point: When your unit tests reach the point where it's painful
to run them more than a couple times per day, you've tipped the scale
In the wrong direction.

» Value/Health Diminishes: The value of your suite of unit tests
diminishes as their abllity to provide continual, comprehensive, and fast
feedback about the health of your system also diminishes.

IF]IRST: [Flast

* Tipping Point: When your unit tests reach the point where it's painful
to run them more than a couple times per day, you've tipped the scale
In the wrong direction.

» Value/Health Diminishes: The value of your suite of unit tests
diminishes as their abllity to provide continual, comprehensive, and fast
feedback about the health of your system also diminishes.

» Confidence Diminishes: When you allow your tests to fall out of
favour, you and your team will question the investment you made to
create them.

[FIIRST: [Flast 2 Recommendations

« Keep your tests fast!
« Keep your design clean

* minimize the dependencies on code that executes slowly.

[FIIRST: [Flast 2 Recommendations

« Keep your tests fast!
« Keep your design clean
* minimize the dependencies on code that executes slowly.

* |f all your tests interact with code that ultimately always makes
a database call, all your tests will be slow.

* This is where the Mock Objects technique can excel (more on
this later).

FIRST Principles

Characteristics of quality tests:

[Flast

[l]solate your tests

[R]epeatable

* [S]elf-validating

« [T]imely

The
Pralggér%gnmers

Pragmatic Unit Testin
in Java 8 with JUnit

s

Jeff Langr

with Andy Hunt
& Dave Thomas

edited by
Susannah Davidson Pfalzer

Source Code: https://pragprog.com/titles/utj2/source code

https://pragprog.com/titles/utj2/source_code

FII]RST: [l]solate your tests

« Good unit tests focus on a small chunk of code to verify (i.e. cohesive):

* That’s in line with our definition of unit; the more code that your test
Interacts with, directly or indirectly, the more things are likely to go awry.

FII]RST: [l]solate your tests

« Good unit tests focus on a small chunk of code to verify (i.e. cohesive):

* That’s in line with our definition of unit; the more code that your test
Interacts with, directly or indirectly, the more things are likely to go awry.

You should be able to run any one test at any time, in any order:

« Good unit tests also don’t depend on other unit tests (or test cases within
the same test method). You might think you're speeding up your tests by
carefully crafting their order so that several tests can reuse some of the
same expensively constructed data. But you're simultaneously creating an
evil chain of dependencies. When things go wrong—and they will—you'll

spend piles of time figuring out which one thing buried in a long chain of
prior events caused your test to fail.

FII]RST: [l]solate your tests

Single Responsibility Principe (SRP) and Testing:

« SRP: classes should have only one reason to change.

FII]RST: [l]solate your tests

Single Responsibility Principe (SRP) and Testing:
« SRP: classes should have only one reason to change.

« SRP provides great guideline for your test methods also. If one of your
test methods can break for more than one reason, consider splitting it into
separate tests. When a focused unit test breaks, it's usually obvious why.

FII]RST: [l]solate your tests

Single Responsibility Principe (SRP) and Testing:
« SRP: classes should have only one reason to change.

« SRP provides great guideline for your test methods also. If one of your
test methods can break for more than one reason, consider splitting it into
separate tests. When a focused unit test breaks, it's usually obvious why.

* It's easy to keep your tests focused and independent if each test
concentrates only on a small amount of behaviour.

* When you start to add a second assert to a test, ask yourself, “Does
this assertion help to verify a single behaviour, or does it represent a
behaviour that | could describe with a new test name?”

FII]RST: [l]solate your tests

 Consider this database access scenario:

* The code you're testing might interact with other code that reads
from a database.

« Data dependencies create a whole host of problems. Tests that must
ultimately depend on a database require you to ensure that the
database has the right data.

* If your data source is shared, you have to worry about external
changes (maybe out of your control) breaking your tests. Don’t forget
that other developers are often running their tests at the same time!
Simply interacting with an external store increases the likelihood that
your test will fail for availablility or accessiblility reasons.

FIRST Principles

Characteristics of quality tests:

[Flast

[l]solate your tests

[R]epeatable

* [S]elf-validating

« [T]imely

The
Pralggér%gnmers

Pragmatic Unit Testin
in Java 8 with JUnit

s

Jeff Langr

with Andy Hunt
& Dave Thomas

edited by
Susannah Davidson Pfalzer

Source Code: https://pragprog.com/titles/utj2/source code

https://pragprog.com/titles/utj2/source_code

FI[R]ST: Good tests should be [R]epeatable

* In test design, you provide an assertion that specifies what the outcome
should be each and every time the test is run.

FI[R]ST: Good tests should be [R]epeatable

* In test design, you provide an assertion that specifies what the outcome
should be each and every time the test is run.

* A repeatable test is one that produces the same results each time you
run it.

« Without repeatabillity, you might be in for some surprises at the worst
possible moments.

 What's worse, these sort of surprises are usually bogus—it's not
really a bug, it's just a problem with the test.

* You can’t afford to waste time chasing down phantom problems.

FI[R]ST: Good tests should be [R]epeatable

« To accomplish repeatable tests, you must isolate them from anything
In the external environment not under your direct control; your system
will inevitably need to interact with elements not under your control,
however.

 We can use a mock object as one way to isolate the rest of the code
under test and keep it independent from the volatility of time.

FI[R]ST: Good tests should be [R]epeatable

Consider this scenario...testing timestamps:

* Timestamps are moving targets, making it a bit of a challenge to assert
what the creation timestamp should be.

* Well, we can’t stop time, but we can fake it out. Or rather, we can fake
out our code to think it's getting the real time, when it instead obtains
the current time from a different source.

We will use the Java 8, java.time.Clock object to demonstrate faking.

FI[R]ST: Good tests should be [R]epeatable

java.time.Clock

 Allows alternate clocks to be plugged in as and when required.

« Simplifies testing by modelling a single instantaneous point on the
time-line.

static Clock systemUTC()
Obtains a clock that returns the current instant using the best

available system clock, converting to date and time using the

UTC time-zone.

abstract Instant instant()
Gets the current instant of the clock.

FI[R]ST: Good tests should be [R]epeatable

The code we want to test

public class QuestionController {

private Clock clock = Clock.systemUTC();
// ...
public int addBooleanQuestion(String text) {
return persist(new BooleanQuestion(text));

}

void setClock(Clock clock) {
this.clock = clock;

}
/...

private int persist(Persistable object) {
object.setCreateTimestamp(clock.instant());
executelnTransaction((em) -> em.persist(object));
return object.getld();

iloveyouboss/16-branch-persistence/src/iloveyouboss/controller/QuestionController.java

FI[R]ST: Good tests should be [R]epeatable

Creates an Instant instance
and stores it in the now

local variable.

iloveyouboss/16-branch-persistence/test/iloveyouboss/controller/Question

@Test

public void questionAnswersDateAdded() {
Instant now = new Date().toInstant():

rollerTest.java

Injects the
now Instant

controller.setClock(Clock.fixed(now, Zoneld.of("America/Denver"))) ‘% into the

int id = controller.addBooleanQuestion("text"):
Question question = controller.find(id);

assertThat(question.getCreateTimestamp(), equalTo(now));

controller via
the setter
method.

| AN

setter method.

When asked for the time, it will always return the now Instant—
because the test previously injected it into the controller through the

FI[R]ST: Good tests should be [R]epeatable

* The persist() method obtains an instant from the injected clock instance and
passes it along to the setCreateTimestamp() method.

* If no client code injects a Clock instance using setClock(), the clock defaults
to the systemUTC clock as Initialized at the field level.

private int persist(Persistable object) {
object.setCreateTimestamp(clock.instant());

executelnTransaction((em) -> em.persist(object));
return object.getld();

}

 Voila! The QuestionController doesn’t know anything about the nature of the
Clock, only that it answers the current Instant.

* The clock used by the test acts as a test double—a stand-in for the real
thing.

FIRST Principles

Characteristics of quality tests:

[Flast

[l]solate your tests

[R]epeatable

* [S]elf-validating

« [T]imely

The
Pralggér%gnmers

Pragmatic Unit Testin
in Java 8 with JUnit

s

Jeff Langr

with Andy Hunt
& Dave Thomas

edited by
Susannah Davidson Pfalzer

Source Code: https://pragprog.com/titles/utj2/source code

https://pragprog.com/titles/utj2/source_code

FIR[S]T: [S]elf-Validating

» Tests aren’t tests unless they assert that things went as expected:
* Avoid the temptation to manually verify the results of tests.

» Test should also be self-arranging; you must automate any setup
your test requires. But remember the [l]solated part of FIRST:

* tests requiring external setup (e.g. use of external db) violates [l].

* any setup must ensure that you can run any one test at any time,
In any order.

FIR[S]T: [S]elf-Validating

* For self-validating, the sky’'s the limit...as an ideal, imagine a system
where:

* you write tests for all changes you make.

* whenever you integrate the code into your source repository, a build
automatically kicks off and runs all the tests (unit and otherwise),
Indicating that your system is acceptably healthy.

* the build server takes that vote of confidence and goes one step
further, deploying your change to production.

« Embracing such continuous delivery (CD) approaches can significantly
reduce the overhead of taking a need from inception to deployed
product.

Infinitest tool for IDEs

Infinitest is a Continuous
Testing plugin for Eclipse and
Intellid. Each time a change is
made on the source code,
Infinitest runs all the tests that
might fail because of these
changes.

I r \ ‘ I n Ite S i -t That's it, it's so simple!
You love TDD? You'll love

Infinitest. You prefer "Test
Last", take a shot too, you might
fall in love as well!

« I'm an Eclipse adept » « I'm an IntelliJ fan » « Where's the manual? »

Use this update site: Search for Infinitest in the Plugin Manager. Follow me »

http://infinitest.github.io

As you make changes to your system, Infinitest identifies and runs (in the background) any
tests that are potentially impacted. With Infinitest, testing moves from being a proactive
task to being a gating criterion, much like compilation, that prevents you from doing
anything further until you've fixed a reported problem.

Cl Tools — Jenkins, TeamCity

e On an even larger scale, you can
use a continuous integration (Cl)
tool such as Jenkins or TeamCity.

e A Cl tool watches your source
repository and kicks off a
build/test process when it
recognises changes.

DOWNLOAD FREE © TAkE A TOUR

https://www.jetbrains.com/teamcity/

Suite of Videos on TeamCity:
https://www.jetbrains.com/teamcity/documentation/

Jenkins

Build great things at any scale

The leading open source automation server, Jenkins provides
hundreds of plugins to support building, deploying and automating
any project.

Download Jenkins

http://jenkins-ci.org/

http://jenkins-ci.org/
https://www.jetbrains.com/teamcity/documentation/

Behaviour Driven Development (BDD) tool

@ Cucumber X n -

&
X

€« C ‘ @ https://cucumber.io Q% o

e Docs Blog Events Videos Training Cucumber Pro Support

Cucumber makes your team amazing

At a glance, Cucumber might just look like another tool for running automated tests.
But it's more than that.

A single source of truth Living documentation

Cucumber merges specification and test documentation into Because they're automatically tested by Cucumber, your
one cohesive whole. specifications are always bang up-to-date.

Focus on the customer Less rework

Business and IT don't always understand each other. When automated testing is this much fun, teams can easily
Cucumber's executable specifications encourage closer protect themselves from costly regressions.

collaboration, helping teams keep the business goal in mind
at all times.

* A tool that facilitates BDD: https://cucumber.io/school

https://cucumber.io/school

JIRA (https://www.atlassian.com/software/jira

Go agile with ease

Whether you're a seasoned agile expert, or just getting started, JIRA

=

Flexible planning

Scrum? Check. Kanban? Check. Mixed
methodology? Check. JIRA Software's rich
planning features enable your team to flexibly
plan in a way that works best for them.

oo

Transparent execution

Whether your team is across the table or
around the world, JIRA Software brings a new
level of transparency to your team's work and
keeps everyone on the same page.

Software unlocks the power of agile

=4

Accurate estimations

Estimations help your team become more
accurate and efficient. Use story points,
hours, t-shirt sizes, or your own estimation

technique. JIRA Software supports them all.

9

Actionable results

Extensive reporting functionality gives your
team critical insight into their agile process.

Backed by data, retrospectives are more data-

driven and actionable than ever before.

Value-driven prioritization

Order user stories, issues, and bugs in your
product backlog with simple drag and drop
prioritization. Ensure stories that deliver the
most customer value are always at the top.

Scalable evolution

Add and change issue types, fields, and
workflows as your team evolves. JIRA
Software is agile project management
designed for teams of every shape and size.

JIRA (https://www.atlassian.com/software/jira

XJIRA Software
Q Teams in Space Backlog Configure " PI
o S IR . QUICK FILTERS: Product Recently updated Onlymyissues Server Ul an
= Bacuog s epics 5 PP
2 w 14 ssues
{‘U 2 b § AN ssues - - - . -
- R T Create user stories and issues, plan sprints, and distribute tasks across
(o Repons SestpacekZ Pls i G e
22 Al jons e e your software team.
& Comvooms e oo . TBaAw
©® Addors Space Travel Partners (] Ut TIS25 Engage Jupiter Express for outer solar system travel f—'-no.‘jparal[l’kn ﬁ 5
PROJECT BHORTCUTS - - O TISI7 When requesting user dotas the sorvice should retum prioe rip info Largo Toam Suoport b IR
Mars Team HipChat Roor —_— KT TISO After 100,000 requests the SeeSpaceEZ server des . 1
Space Staton Dev Roadmap
: I PR a I B ¢ TS7 500 Error when requesting a reservation ?'a I rack
TR @ | 107 71510 Baa ISON data comng back rom ol AP s
e o O ¢ 71518 Enable Speedy SpaceCraft as the preformed individual transit provider { Largo Toam Suoport Ji JE1
+ Add shortost Myper-speed shuttes n ' s E ' 3 s
Prioritize and discuss your team's work in full context with complete
New lsunch platiorms o Backlog 49 ssues Create sprint VISIbIlIty
i g | 7 7525 Enomge neter Express forcuser soe systom vave s ’
l O * TIS-37 When requesting user details the service should retum prior trip info [Space Travel Partnors JE}
e g K0 TISS Afer 100,000 requests the SeeSpaceEZ server dies [Space Travel Partners BERR
B * TIS7 500 Emor when requesting a reservation Local Mars Office JIE1
==

¥ JIRA Software

Teams in Space Version 6.3.3 (unreieasen meiase
& oo

Scrum: Teams in Space ~

Release

Start: 10 Aug 2015 Release: 9 Oct 2015 Release notes
Version §.3.3

' Backiog
28 cays left

[[Agie board

Ship with confidence and sanity knowing the information you have is [Ep—
always current. n 12 v 106 = 735 o 2932

FE Al issues

& Components

1-10 of 108
@ Asons
P T Kay Summary Assignae Status Devalopment
PROJECT SHORTCUTS §
£ s A m Jeft DONE LR
Ndars Toom HyChet Foom t TIS-111 The revolutionary Afterbumer reparting capabllity u e
R t Space Station Dev Roadmap Tt a TIS-110 Afterburmer revision Wl automation 21 Bryan DONE
e p o Taams In Space Org Chart)
r [t L] Tis-108 Afterbumer revision Vi script B Sherri DONE MERGED
Orbital Spotify Playfist
Hyperspeed Bitbucket Repa t TiS-108 Aferbumer revision VI dema ﬂ Brandon DONE MERGED
+ Add shorteut + TIS-107 Afwrburmer revision VI prototype w Jay DONE
Improve team performance based on real-time, visual data you can use. . - i et e g Ko oo rp—
t a TI5-105 Create video of launch H Sara DONE
T W} TIS-104 Write blag post for launch N Carles DONE 3 commits
t TIS-103 Review pre-launch checklist B} ey ooNE
+ TIS-102 Afterburner revision V1 nedundant 1est H Karen DONE

110 of 106

SonarCube (http://www.sonarqube.org/)

All in one

SonarQube is an open platform to manage code quality. As
such, it covers the 7 axes of code quality:

rAmhi?ecm & Design

LComments]

LCoding mles] I ianbass

LDupIicotions

L

LUnif tests L

l Potential bugsJ lComplexityJ

SonarCube helps control
your Technical Debt.

Wikipedia: Technical debt is
"a concept in programming
that reflects the extra
development work that arises
when code that is easy to
Implement in the short run is
used instead of applying the
best overall solution.”

Languages covered

More than 20 programming languages are covered through
plugins including Java, C#, C/C++, PL/SQL, Cobol, ABAP...

FIRST Principles

Characteristics of quality tests:

[Flast

[l]solate your tests

[R]epeatable

* [S]elf-validating

« [T]imely

The
Pralggér%gnmers

Pragmatic Unit Testin
in Java 8 with JUnit

s

Jeff Langr

with Andy Hunt
& Dave Thomas

edited by
Susannah Davidson Pfalzer

Source Code: https://pragprog.com/titles/utj2/source code

https://pragprog.com/titles/utj2/source_code

FIRS[T]: [T]imely

* YOou can write unit tests at virtually any time. You should focus
on writing unit tests in a timely fashion.

* Many test-infected dev teams have guidelines or strict rules
around unit testing. Some use review processes or even
automated tools to reject code without sufficient tests.

« Keeping atop good practices like unit testing requires continual
vigilance.

I.
[

R

b

Waterford Institute of Technology

HETITIOID TEICNEOLAIOCHTA PHORT LURCE

H©

Except where otherwise noted, this content is
licensed under a Creative Commons Attribution-

NonCommercial 3.0 License.

For more information, please see
http://creativecommons.org/licenses/by-nc/3.0/

0

elearning
support unit

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

