Liskov Substitution Principle

Produced Eamonn de Leastar (edeleastar@wit.ie)

by: Dr. Siobhan Drohan (sdrohan@wit.ie)

4), Waterford Institute of Technology Department of Computing and Mathematics

I

Qo INSTITIOID TEICNEOLAIOCHTA PHORT LAIRGE http://www.wit.ie/

mailto:edeleastar@wit.ie
mailto:sdrohan@wit.ie

SOLID Class Design Principles

In this talk, we will refer to the SOLID

principles examples in this book and
also this website. Clean Code

A Handbook of Agile Software Craftsmanship

SOLID -2 five principles for object-oriented - .
class design i.e. best guidelines for ‘ |
building a maintainable ' |

object-oriented system.

Robert C. Martin

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

SOLID Class Design Principles

Single Responsibility Principle (SRP). Classes should have one, and only one,
reason to change. Keep your classes small and single-purposed.

Open-Closed Principle (OCP). Design classes to be open for extension but
closed for modification; you should be able to extend a class without
modifying it. Minimize the need to make changes to existing classes.

Liskov Substitution Principle (LSP). Subtypes should be substitutable for their
base types. From a client’s perspective, override methods shouldn’t break
functionality.

Interface Segregation Principle (ISP). Clients should not be forced to depend
on methods they don’t use. Split a larger interface into a number of smaller
interfaces.

Dependency Inversion Principle (DIP). High-level modules should not depend on
low-level modules; both should depend on abstractions. Abstractions should not
depend on details; details should depend on abstractions.

COMMUNICATIONS | Barbara Liskov
A C M

Barbara Liskov wins Turing Award
ACM cites 'foundational innovations' in programming language design

Barbara Liskov

ACM’s A.M. Turing
Award Winner

March 10, 2009

*‘g n | i(_.":g Share =

Steps Toward .
Institute Professor Barbara
Self-Aware Networks :
Liskov has won the
The Metropolis Model Association for Computing
Machinery's A.M. Turing
Why Computer Science Award, one of the highest
Doesn't Matter | honors in science and
s engineering, for her
Probabilistic pioneering work in the
Databases

design of computer
programming languages.
Liskov's achievements
underpin virtually every
modern computing-related
convenience in people's daily
lives.

The Five-Minute Rule
20 Years Later

Liskov, the first U.S. woman Eg::g',"o‘-;f"r“g"(:ovmcy

to earn a PhD from a

computer science department, was recognized for helping make software more reliable,
consistent and resistant to errors and hacking. She is only the second woman to receive
the honor, which carries a $250,000 purse and is often described as the "Nobel Prize in
computing.”

+ WEARIT ON YOUR FACE

+ BLOCKS THE SUN
¥ _PRBFHEETS- STINGS YOUREYES

VA, VIS4

I
s

https://www.novoda.com/blog/designing-something-solid/

https://www.novoda.com/blog/designing-something-solid/

sunglasses interface would
have fairly simple rules like:

* shields from the sun; SR

' BLOCKS THE SUN
% _PROTFEETS- STINGS YOUREYES

e attaches to a face.

Implementing the sunglasses

interface with suntan lotion

would seem to make sense:

e jtshields from the sun and
attaches to the face.

https://www.novoda.com/blog/designing-something-solid/

https://www.novoda.com/blog/designing-something-solid/

sunglasses interface would
have fairly simple rules like:

* shields from the sun; SR

+ BLOCKS THE SUN
% _PROTFEETS- STINGS YOUREYES

e attaches to a face.

Implementing the sunglasses

interface with suntan lotion

would seem to make sense:

e jtshields from the sun and
attaches to the face.

But semantically the expected behaviour is different enough to
cause behavioural problems - in this case, by stinging your eyes!

https://www.novoda.com/blog/designing-something-solid/

https://www.novoda.com/blog/designing-something-solid/

“Don’t implement interfaces in a way that
breaks expected semantic behaviour.”

sunglasses interface would
have fairly simple rules like:
* shields from the sun;

e attaches to a face.

Implementing the sunglasses

interface with suntan lotion

would seem to make sense:

e jtshields from the sun and
attaches to the face.

+ WEARITON YOUR FACE
+ BLOCKS THE SUN
% _PROTFEETS- STINGS YOUREYES

But semantically the expected behaviour is different enough to
cause behavioural problems - in this case, by stinging your eyes!

https://www.novoda.com/blog/designing-something-solid/

https://www.novoda.com/blog/designing-something-solid/

“Don’t implement interfaces in a way that
breaks expected semantic behaviour.”

Liskov Substitution Principle

If it looks like a duck and quacks like a duck but needs batteries,
you probably have the wrong abstraction.

LSP — Formal Definition

< Methods that refer to base classes must be able to use objects
of derived types without knowing it.

If for each object 0, of type S there is an

object o, of type T such that for all T O, T
programs P defined in terms of T, the
behaviour of P is unchanged when o is Iextends

substituted for o, then S is a subtype of T.

S O;:S

Barbara Liskov, “Data Abstraction and
Hierarchy,” SIGPLAN Notices, 23,5 (May, 1988).

LSP: Simple Violation (and fix)

Simple Violation of LSP

references a base
type Shape

violates LSP
because it must
know of every
derived type of
Shape.

7

void drawShape (Shape shape)
{

if (shape instanceof Square)

{
drawSquare ((Square)shape) ;

}

else if (shape instance of Circle)

{

drawCircle ((Circle) shape);

}
}

<-drawShapes must be modified whenever new derivatives of
Shape are presented. What other SOLID principle does it

violate?

Adhering to LSP

class Shape

{

void draw()

{//..}
}

class Circle extends Shape
{
private double itsRadius;
private Point itsCenter;
public void draw ()

{ //..}
}

void drawShape (Shape s)
{

s.draw () ;

}

class Square extends Shape

{

private double itsSide;

private Point itsTopLeft;

public void draw ()

{ //..}

<-drawShape now
adheres to LSP

LSP: Semantic Violation

LSP

An object inheriting from
a base class, interface,
or other abstraction
must be semantically substitutable

for the original abstraction.

http://www.codemag.com/article/1001061

http://www.codemag.com/article/1001061

Rectangle

class Rectangle

{

private int width;
private int height;

public void setWidth (int width)

{...}
public void setHeight (int height)

{...}
public int getWidth ()

{...}
public int getHeight ()

{...}

Rectangle

< Assume the Rectangle class is released for general use in

the company.

Square

< Introduce Square as a subclass of
Rectangle.

< Inheritance “is a” relationship:
<A Square is a rectangle.

@ However, there is a subtle
difference...it’s width and height are
equal:

“-Square only needs one dimension
but both are inherited.

Rectangle

T

Square

17

Square

< For a Square, both setWidth() and

setHeight() should not vary independently. Rectangle

- Client could easily call one and not the other
—thus compromising the Square.

?1ass Rectangle ES(}[JEirEB

private int width;

private int height;

public void setWidth (int width)

{...}
public void setHeight (int height)

{...}
public int getWidth ()

{...}
public int getHeight ()

{...}

Square

< Potential solution:

“implement setWidth() and setHeight() in Rectangle
Square class.

“ Each of these methods should then make
sure both width & height are adjusted.

?1ass Rectangle ES(}[JEirEB

private int width;

private int height;

public void setWidth (int width)

{...}
public void setHeight (int height)

{...}
public int getWidth ()

{...}
public int getHeight ()

{...}

Square

Potential solution implementation:

class Square extends Rectangle

{
public void setWidth (int width)

{
super .setWidth (width) ;

super .setHeight (width) ;

}
public void setHeight (int height)

{
super . setWidth (height) ;

super.setHeight (height) ;
}

Rectangle

Square

20

Polymorphism

void £ (Rectangle r)

{
r.setWidth (5) ;

}

<-Polymorphism ensures, if the f() method:

<-is passed a Rectangle, then its width will be
adjusted.

¢ is passed a Square, then both height and width will
be changed

< Assume model is consistent & correct.

<-However....

Rectangle

Square

21

More Subtle Problem

void g (Rectangle r)
{

r.setWidth (5) ;

r.setHeight (4) ;

assert (r.getWidth() * r.getHeight()) == 20;
}

< If r is a Rectangle instance...

% g() methods works as expected

< If r is a Square instance...

$g() assertion fails

©g() assumes that width and height of a Rectangle can be varied
independently.

< Substitution of a Square violates this semantic assumption.

<-Square violates LSP.

22

LSP: Semantic Violation

Square

Rectangle

classicial : LS principle :

Is-substitute for
relationship

Is- a relationship

LSP: Subtypes should be substitutable for their base types.

Validating the Model

<A model, viewed in isolation, cannot be

meaningfully validated. - |
ectangle

< The validity of a model can only be
expressed in terms of its clients:

€ Examining the final version of the Square and
Rectangle classes in isolation, we found that they Square
were self consistent and valid.

©When we examined from the viewpoint of g()
(which made reasonable assumptions) the model
broke down.

25

Validating the Model

- When considering whether a

Rectangle

design is appropriate or not, it
must be examined in terms of the
reasonable assumptions that will

be made by the users of that

design. >quare

26

Behavioural Problems

<A square might be a rectangle, but a Square object is not a
Rectangle object.

©the behaviour of a Square object is not consistent with the behaviour of a
Rectangle object.

©The LSP makes clear that the inheritance relationship pertains to
behaviour that clients depend upon.

o LS principle : q
classicial :
i« a relationshi is-substitute for l —
P relationship T

Rectangle

With LSP...

“is-a” really means

“behaves exactly like”

I.
[

R

b

Waterford Institute of Technology

HETITIOID TEICNEOLAIOCHTA PHORT LURCE

H©

Except where otherwise noted, this content is
licensed under a Creative Commons Attribution-

NonCommercial 3.0 License.

For more information, please see
http://creativecommons.org/licenses/by-nc/3.0/

0

elearning
support unit

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

