
Liskov Substitution Principle

Produced

by:

Department of Computing and Mathematics

http://www.wit.ie/

Eamonn de Leastar (edeleastar@wit.ie)

Dr. Siobhán Drohan (sdrohan@wit.ie)

mailto:edeleastar@wit.ie
mailto:sdrohan@wit.ie

SOLID Class Design Principles

In this talk, we will refer to the SOLID

principles examples in this book and

also this website.

SOLID  five principles for object-oriented

class design i.e. best guidelines for

building a maintainable

object-oriented system.

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

SOLID Class Design Principles

S Single Responsibility Principle (SRP). Classes should have one, and only one,
reason to change. Keep your classes small and single-purposed.

O Open-Closed Principle (OCP). Design classes to be open for extension but
closed for modification; you should be able to extend a class without
modifying it. Minimize the need to make changes to existing classes.

L Liskov Substitution Principle (LSP). Subtypes should be substitutable for their
base types. From a client’s perspective, override methods shouldn’t break
functionality.

I Interface Segregation Principle (ISP). Clients should not be forced to depend
on methods they don’t use. Split a larger interface into a number of smaller
interfaces.

D Dependency Inversion Principle (DIP). High-level modules should not depend on
low-level modules; both should depend on abstractions. Abstractions should not
depend on details; details should depend on abstractions.

Barbara Liskov

4

https://www.novoda.com/blog/designing-something-solid/

https://www.novoda.com/blog/designing-something-solid/

https://www.novoda.com/blog/designing-something-solid/

sunglasses interface would
have fairly simple rules like:
• shields from the sun;
• attaches to a face.

Implementing the sunglasses
interface with suntan lotion
would seem to make sense:
• it shields from the sun and

attaches to the face.

https://www.novoda.com/blog/designing-something-solid/

https://www.novoda.com/blog/designing-something-solid/

But semantically the expected behaviour is different enough to
cause behavioural problems - in this case, by stinging your eyes!

sunglasses interface would
have fairly simple rules like:
• shields from the sun;
• attaches to a face.

Implementing the sunglasses
interface with suntan lotion
would seem to make sense:
• it shields from the sun and

attaches to the face.

https://www.novoda.com/blog/designing-something-solid/

https://www.novoda.com/blog/designing-something-solid/

But semantically the expected behaviour is different enough to
cause behavioural problems - in this case, by stinging your eyes!

“Don't implement interfaces in a way that
breaks expected semantic behaviour.”

sunglasses interface would
have fairly simple rules like:
• shields from the sun;
• attaches to a face.

Implementing the sunglasses
interface with suntan lotion
would seem to make sense:
• it shields from the sun and

attaches to the face.

https://www.novoda.com/blog/designing-something-solid/

“Don't implement interfaces in a way that
breaks expected semantic behaviour.”

LSP – Formal Definition

Methods that refer to base classes must be able to use objects
of derived types without knowing it.

If for each object o1 of type S there is an

object o2 of type T such that for all

programs P defined in terms of T, the

behaviour of P is unchanged when o1 is

substituted for o2 then S is a subtype of T.

Barbara Liskov, “Data Abstraction and

Hierarchy,” SIGPLAN Notices, 23,5 (May, 1988).

T

S

extends

O1: S

O2: T

LSP: Simple Violation (and fix)

Simple Violation of LSP

drawShapes must be modified whenever new derivatives of
Shape are presented. What other SOLID principle does it
violate?

void drawShape (Shape shape)

{

if (shape instanceof Square)

{

drawSquare ((Square)shape);

}

else if (shape instance of Circle)

{

drawCircle ((Circle) shape);

}

}

violates LSP
because it must
know of every
derived type of

Shape.

references a base
type Shape

Adhering to LSP

drawShape now
adheres to LSP

class Shape

{

void draw()

{//…}

}
void drawShape (Shape s)

{

s.draw();

}

class Circle extends Shape

{

private double itsRadius;

private Point itsCenter;

public void draw()

{ //… }

}

class Square extends Shape

{

private double itsSide;

private Point itsTopLeft;

public void draw()

{ //… }

}

LSP: Semantic Violation

LSP

An object inheriting from

a base class, interface,

or other abstraction

must be semantically substitutable

for the original abstraction.

http://www.codemag.com/article/1001061

http://www.codemag.com/article/1001061

Rectangle

Assume the Rectangle class is released for general use in
the company.

class Rectangle

{

private int width;

private int height;

public void setWidth (int width)

{...}

public void setHeight (int height)

{...}

public int getWidth ()

{...}

public int getHeight ()

{...}

}

Rectangle

17

Square

Introduce Square as a subclass of
Rectangle.

Inheritance “is a” relationship:

A Square is a rectangle.

However, there is a subtle
difference…it’s width and height are
equal:

Square only needs one dimension
but both are inherited.

Rectangle

Square

class Rectangle

{

private int width;

private int height;

public void setWidth (int width)

{...}

public void setHeight (int height)

{...}

public int getWidth ()

{...}

public int getHeight ()

{...}

}

Square

For a Square, both setWidth() and
setHeight() should not vary independently.

Client could easily call one and not the other
– thus compromising the Square.

Rectangle

Square

class Rectangle

{

private int width;

private int height;

public void setWidth (int width)

{...}

public void setHeight (int height)

{...}

public int getWidth ()

{...}

public int getHeight ()

{...}

}

Square

Potential solution:

implement setWidth() and setHeight() in
Square class.

Each of these methods should then make
sure both width & height are adjusted.

Rectangle

Square

20

Square

Rectangle

Square

class Square extends Rectangle

{

public void setWidth (int width)

{

super.setWidth(width);

super.setHeight(width);

}

public void setHeight (int height)

{

super.setWidth(height);

super.setHeight(height);

}

}

Potential solution implementation:

21

Polymorphism

Polymorphism ensures, if the f() method:

is passed a Rectangle, then its width will be
adjusted.

is passed a Square, then both height and width will
be changed

Assume model is consistent & correct.

However….

void f (Rectangle r)

{

r.setWidth(5);

} Rectangle

Square

22

More Subtle Problem

If r is a Rectangle instance…

g() methods works as expected

If r is a Square instance…

g() assertion fails

g() assumes that width and height of a Rectangle can be varied
independently.

Substitution of a Square violates this semantic assumption.

Square violates LSP.

void g (Rectangle r)

{

r.setWidth(5);

r.setHeight(4);

assert (r.getWidth() * r.getHeight()) == 20;

}

LSP: Semantic Violation

RectangleSquare !=

LSP: Subtypes should be substitutable for their base types.

25

Validating the Model

A model, viewed in isolation, cannot be
meaningfully validated.

The validity of a model can only be
expressed in terms of its clients:

Examining the final version of the Square and
Rectangle classes in isolation, we found that they
were self consistent and valid.

When we examined from the viewpoint of g()
(which made reasonable assumptions) the model
broke down.

Rectangle

Square

26

Validating the Model

When considering whether a
design is appropriate or not, it
must be examined in terms of the
reasonable assumptions that will
be made by the users of that
design.

Rectangle

Square

Behavioural Problems

A square might be a rectangle, but a Square object is not a
Rectangle object.

the behaviour of a Square object is not consistent with the behaviour of a
Rectangle object.

The LSP makes clear that the inheritance relationship pertains to
behaviour that clients depend upon.

Rectangle

Square

!=

With LSP…

“is-a” really means

“behaves exactly like”

Except where otherwise noted, this content is

licensed under a Creative Commons Attribution-

NonCommercial 3.0 License.

For more information, please see

http://creativecommons.org/licenses/by-nc/3.0/

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

